
www.manaraa.com

Wayne State University

Wayne State University Dissertations

1-1-2011

Qos-aware fine-grained power management in
networked computing systems
Jiayu Gong
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Engineering Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Gong, Jiayu, "Qos-aware fine-grained power management in networked computing systems" (2011). Wayne State University
Dissertations. Paper 349.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/349?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

QOS-AWARE FINE-GRAINED POWER MANAGEMENT IN
NETWORKED COMPUTING SYSTEMS

by

JIAYU GONG

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2011

MAJOR: COMPUTER
ENGINEERING

Approved by:

Advisor Date

www.manaraa.com

c©COPYRIGHT BY

JIAYU GONG

2011

All Rights Reserved

www.manaraa.com

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisor, Dr. Cheng-Zhong Xu. It has

been an honor to work with him. I appreciate all his invaluable guidance, support,

and encouragement throughout this work. The joy and enthusiasm he has for the

research was contagious and motivational for me in the Ph.D. pursuit, even during

tough times.

I am also grateful to my committee members: Dr. Song Jiang, Dr. Nabil Sarhan,

and Dr. Hongwei Zhang for their time, interest, and helpful suggestions to improve

this work.

The memebers in Cloud and Internet Computing (CIC) group have contributed

immensely to my personal and professional time at Wayne State University. The

group has been a source of friendships as well as great advice and collaboration. I am

privileged for having Xiliang Zhong, Song Fu, Jia Rao, Bojin Liu, Bo Yu, Xiangping

Bu, Kun Wang, Zhen Kong, Xuechen Zhang, Yizhe Wang, Yuehai Xu, Haikun Liu,

Yaqin Luo, Cheng Wang, Yudi Wei, Duan Hu, and Mumtaz Dawoodi as my colleagues

and friends.

Finally, I would like to thank my family for all their love, encouragement and

understanding. I wish to thank my parents supporting me in all my pursuits. I wish

to express my gratitude to my wife, Jing Qian, for her continuous love, understanding

and support for these days and nights. Especially, the time she spared for me on our

little Alvin (son) and from her own studies was precious.

ii

www.manaraa.com

TABLE OF CONTENTS

Acknowledgements . ii

List of Figures . vii

List of Tables . ix

Chapter 1 Introduction . 1

1.1 Background and Motivation . 1

1.2 Problems and Objectives . 4

1.3 Summary of Contributions . 6

1.3.1 Outline . 9

Chapter 2 Related Work . 11

2.1 Transmission Speed Adaptation in Communication Systems 11

2.2 Power Management in Enterprise Environments 14

2.2.1 Power Consumption Measurement, Modeling and Profiling . . 14

2.2.2 Power Management Mechanism 16

2.2.3 Power Management Scope . 18

2.2.4 Power Management Objectives 20

2.2.5 Power Management Methodologies 25

Chapter 3 Maximizing Rewards in Wireless Networks with Energy

and Timing Constraints . 29

3.1 System Model and Problem Formulation 30

3.1.1 Data Model . 30

3.1.2 Power Consumption Model . 32

iii

www.manaraa.com

3.1.3 Problem Formulation . 34

3.2 Branch-and-Prune for the Optimal Solutions 37

3.2.1 Branch-and-Prune Algorithm 38

3.2.2 Algorithm Analysis . 42

3.3 Time-Efficient Approximation . 43

3.3.1 Polynomial-time Approximated Approach (Clustering) 44

3.3.2 Algorithm Analysis . 46

3.4 Performance Evaluation . 47

3.4.1 Simulation Setup . 48

3.4.2 Simulation Results . 49

Chapter 4 PPM: A Power Management Middleware for Networked

Computing Systems . 61

4.1 Overview . 62

4.2 Real-Time Power Metering . 63

4.2.1 Design of Power Metering Tool 63

4.2.2 Power Model . 65

4.2.3 Power Model Evaluation . 71

4.2.4 Integration with DSP . 74

4.3 Power Management Middleware . 76

4.3.1 Architecture . 76

4.3.2 Design of Power Management Client (PMC) 78

4.3.3 Design of Power Management Server (PMS) 79

4.3.4 Cross-Layer Message Passing 80

Chapter 5 System-Level Peak Power Management 82

5.1 Black-box Feedback Control for Power Management 83

iv

www.manaraa.com

5.1.1 Overview of Feedback Control 83

5.1.2 Design of the PID Controller 85

5.2 A Gray-box Approach . 88

5.2.1 Architecture . 88

5.2.2 Controller Design . 90

5.2.3 Model Prediction . 90

5.3 Model Construction . 93

5.3.1 Experiment Environment . 93

5.3.2 Model Parameters Estimation 94

5.4 Evaluation . 95

5.4.1 Experimental Methodology . 95

5.4.2 Model Validation . 96

5.4.3 Controller Responsiveness . 97

5.4.4 Impact on Performance of Application 100

Chapter 6 Automated Coordination of Power and Performance in Vir-

tualized Data centers . 102

6.1 System Architecture . 103

6.1.1 Control Power and Performance with VCPU Caps 103

6.1.2 Design of vPnP . 104

6.2 System Implementation . 109

6.3 Evaluation . 111

6.3.1 Experimental Methodology . 111

6.3.2 Experimental Results . 113

Chapter 7 Statistical QoS Guarantee on Processing Delay in BBUs 120

7.1 Policy Design . 121

v

www.manaraa.com

7.1.1 Robbins-Monro Method . 122

7.1.2 Fuzzy Controller . 124

7.2 Implementation . 128

7.3 Experimental Results . 129

Chapter 8 Conclusions and Future Work 132

8.1 Conclusions . 132

8.2 Future Work . 135

References . 137

Abstract . 150

Autobiographical Statement . 153

vi

www.manaraa.com

LIST OF FIGURES

3.1 One-transmitter-multiple-receiver model in a single-hop wireless network. 30

3.2 Partial state space tree after one enumeration. 40

3.3 Partial state space tree after two enumerations. 41

3.4 The complete state space tree by pruning. 41

3.5 The reward-time-energy relationship in a 3-D space. 45

3.6 Reward under different time and energy constraints. 50

3.7 Reward and execution time with different numbers of receivers. . . . 51

3.8 Effectiveness of states pruning with 10 periodic data steams. 54

3.9 Impact of number of clusters. 55

3.10 Impact of ratio of problem size over cluster number. 57

3.11 Impact of different strategies selecting representative node. 58

4.1 Power metering design. 64

4.2 Power measurement circuit. 66

4.3 Power estimation of selected applications. 73

4.4 Power estimation error proportion of selected applications. 74

4.5 Average error and RMSE of power model. 74

4.6 Architecture of PMM. 77

4.7 Sequence diagram of PM decision making. 81

5.1 Example of a long settling time of P controller. 85

5.2 PID based power cap controller. 86

5.3 Data for system identification and model evaluation. 86

5.4 Power control loop. 89

5.5 Average error of power model. 96

vii

www.manaraa.com

5.6 Average error of performance prediction model. 97

5.7 System power without power controller: 900 clients. 98

5.8 Performance of controllers: 900 clients. 98

5.9 CDF of length of power violations . 99

5.10 Impact on application performance 100

5.11 Average power. 101

6.1 System architecture of vPnP. 105

6.2 Performance and power prediction. 113

6.3 Results of utility function U1 with performance-preferred policy (α =

0.9). 115

6.4 Results of utility function U1 with power-preferred policy (α = 0.1). . 115

6.5 Results of utility function U2 with power-preferred policy (α = 0.1). . 116

6.6 Comparison between vPnP and Co-Con running TCPW shopping work-

load. 116

6.7 Comparison between vPnP and CoCon running TPC-W ordering work-

load . 117

6.8 Performance of vPnP and Co-Con. 118

6.9 Reaction to power budget change. 119

7.1 Power management controller design. 124

7.2 Fuzzy controller design. 125

7.3 Design of the fuzzy control rules. 127

7.4 System Overview. 129

7.5 Statistic QoS controller on streaming on BBU. 129

viii

www.manaraa.com

LIST OF TABLES

3.1 An example for 4 data streams with 2 data size levels and 2 transmis-

sion rate levels. 39

4.1 Beagle Board major hardware components specification. 66

4.2 Power consumption and execution time of DSP (in comparison with

ARM). 75

6.1 Prediction accuracy. 114

7.1 Comparison of three settings (streaming on BBU). 130

7.2 Comparison of three target delay with same QoS quantile (streaming

on BBU). 130

7.3 Comparison of three running scenarios (TPC-W on server). 131

ix

www.manaraa.com

1

Chapter 1

Introduction

Power is emerging to be the key challenge in networked computing systems, from

real-time embedded systems to enterprise server environments. Meanwhile, a guar-

anteed level of Quality-of-Service (QoS) is required to be provided. Our work is

motivated by the challenge of power management with demands of QoS guarantee

in networked computing systems. In this chapter, we first introduce the background

and motivation of our work in power management in networked computing systems.

Then, we discuss the major design challenges and present the features of our solution.

We will outline the rest of the dissertation in the end of this chapter.

1.1 Background and Motivation

Power management is one of the key design issues in networked computing sys-

tems. The motivation of the proposed research will be discussed from the perspectives

of both real-time embedded and enterprise environments.

In the context of real-time embedded systems, energy is a critical resource, es-

pecially for the networked portable systems such as PDAs, pocket PCs, and cellu-

www.manaraa.com

2

lar phones. On one hand, many popular applications designed for these systems

consume significantly high energy, such as video processing and wireless communi-

cations. On the other hand, most of these devices are power by batteries which is

finite. Limitations in battery capacities and demands for longer device operation time

have motivated research for networked real-time systems, which can be interpreted as

minimizing total energy consumption for a given workload. However, some wireless

devices may rely on renewable energy sources. These devices often work in periodic

cycles during which the energy collection is limited. In this case, the most important

considerations is not to minimize energy consumption but to maximize the utility of

energy available during each cycle [72].

The energy expenditure on networked real-time systems consists of two parts: the

expenditure on the circuit board and the expenditure for wireless communication.

With advances on semiconductor and circuit design, the power dissipation on circuit

board is becoming less significant in the overall system power consumption. But the

power consumption in wireless communications, especially the radio power compo-

nents, does not benefit much from Moore’s Law and has become a major source of

power consumption in low-power networked real-time systems [87]. This motivates

our work to be emphasized on seeking energy efficiency on wireless communication

rather than on circuit board for networked real-time systems.

The concern of power consumption is not limited to the real-time embedded sys-

tems only. Such a concern rises in the enterprise server environments as well. Modern

enterprise servers are featured with increasing performance capabilities accompanied

by a dramatic rise in power consumption. For enterprise systems, online power man-

agement is necessary due to several significant reasons. First, the electricity bill keeps

increasing in data centers and online power management can reduce this cost. By

2011, U.S. data centers will consume 100 billion kWh at a cost of $7.4 billion in

www.manaraa.com

3

contrast to 61 billion kWh in 2006 [38]. Second, power provisioning is constrained

by the cooling and power delivery limitations. It shows the nearly 60 Amps per rack

provisioned currently in data centers could be a bottleneck for high density configu-

ration [94]. Third, high power consumption in a data center can lead to tremendous

environment pollutions. According to the U.S. Environmental Protection Agency

(EPA), each 1000 kWh of energy consumption generates 0.72 tons of CO2 emission.

The CO2 emission due to U.S. data centers in 2006 was estimated to be 44 million

tons, which is equivalent to the output of 8 million passenger vehicles [38]. Addi-

tionally, power consumption can impact reliability and availability of the systems as

well.

Thus, there are two key design issues existing for effectively operating today’s

enterprise servers. First, power consumption has to be capped within the capac-

ity of the power supplies and cooling facilities in order to reduce operating costs

and avoid system failures caused by power capacity overload or system overheating.

Second, service owners need to be assured by meeting their required Service-Level

Agreements (SLAs), such as response time and throughput. However, there are a few

challenges in power and performance management in enterprise server environments.

The challenge of power budgeting remains on how to dynamically plan system re-

source or transition the hardware components from high-power states to low-power

states in a responsive and accurate manner whenever the system power consump-

tion exceeds a given power budget. As the characteristics of workloads in servers

are usually heterogeneous and time-varying, the impact on system performance due

to power management varies greatly. Improving energy efficiency without significant

effect on performance as possible becomes challenging. Hence, both performance and

power management algorithms must be self-adaptive to workload variations for op-

timal overall system performance. With proliferation of virtualization, the density

www.manaraa.com

4

of server configuration can be higher using consolidation. It leads to a more severe

power provisioning problem. Furthermore, power and performance management be-

comes more challenging due to resource sharing and interference among co-residing

virtual machines (VMs).

Although there are a number of existing work providing power management strate-

gies to meet different requirements, the lack of a general framework of power man-

agement solutions motivates us to design and implement a power management mid-

dleware for networked computing systems.

1.2 Problems and Objectives

In this dissertation, we aim to build power-efficient networked computing systems.

Nowadays, one general principle in system design is to design the systems based

on their peak performance requirement. However, their capacities often exceed the

average throughput demand and their busy time usually accounts for only a small

fraction of the application time. For example, in [14], the authors analyzed average

CPU utilization of a sample of 5,000 Google servers over a period of 6 months. Though

the distribution of CPU utilization may vary across different clusters and workloads,

a common trend is that that servers spend most of time within the 10-50% CPU

utilization range and relatively little aggregate time at high utilization levels. This

makes it possible for processor or transmitter slowdown to reduce the processing speed

and still ensure no tasks miss their deadlines. Both processor speed slowdown and

wireless transmitter slowdown save energy with the penalty of performance loss.

In real-time systems, applications are usually delay sensitive. More and more

wireless real-time systems are being built with renewable energy resources. These

devices often work in periodic cycles during which the energy collection is limited.

www.manaraa.com

5

Due to the real-time and energy limitation, it is not always possible for a wireless

node to deliver all data in its transmission buffer at a time. It is more desirable to

transit more valuable data first in case a wireless node cannot send all its data. To

quantify the level of importance of a packet, we associate a reward to each packet

transmitted. Thus, the object becomes to maximize system rewards under given time

and energy constraints.

The power consumption from circuit board is a major resource of power con-

sumption of the entire system thus it affect the system-wide power consumption sig-

nificantly. In server environments, processor is still one dominant energy-consuming

components although its significance is decreasing. Dynamic Voltage and Frequency

Scaling (DVFS) is the most effective slowdown technique to reduce power consump-

tion by scaling the processor voltage and frequency when the system is not fully

loaded. Ideally, processor slowdown leads to cubic power saving on processor with

a linear performance loss. DVFS can thus regulate system-level power consump-

tion effectively. Generally, system-level power consumption increases with system

processing, networking and storage usage. It is difficult to plan the system usage in

advance in a networked computing system due to the nature of variability. To regulate

the power consumption within the power cap in an accurate, stable and responsive

manner is necessary to reduce operating costs and avoid system failures without sig-

nificant performance loss. As the existing black-box method may not be responsive

over a variety of workloads, we provide responsive control over system-level power

consumption using information of system behaviors.

On the other track, performance could be the first-class constraint to meet. Thus,

servers are often over-provisioned significantly to meet target performance constraints

under peak loads. However, this design leads to poor overall energy efficiency since

servers are typically underutilized. Thus, power consumption is desirable to be re-

www.manaraa.com

6

duced in order to improve energy efficiency. Soft real-time services require to maintain

QoS quantile to a set point. The challenges rely on the difficulty on planning system

usage to meet the set point while minimizing power consumption.

Additionally, it is also desirable to provide guarantees on both power and perfor-

mance. As the characteristics of workloads in servers are usually heterogeneous and

time-varying, it is required that power management scheme should be self-adaptive

to workload variations for optimal overall system performance. Virtualization tech-

nologies bring Due to resource sharing of VMs, the techniques imposed on shared

hardwares, such as DVFS, may not be applicable. Instead, re-allocating CPU re-

sources by limiting processing time to VMs can both regulate power consumption

and retain performance isolation.

We notice there is few work providing a general-purposed, practical and com-

prehensive power management middleware for networked computing systems. We

develop a power management middleware, named PMM. PMM has the functionali-

ties of power and performance monitoring, power management (PM) policy selection

and control, as well as energy efficiency analysis. PMM is a general framework of

power management middleware for different platforms, from servers to real-time em-

bedded systems. We deploy PMM on Base Band Units (BBUs) to supply the gap of

lack of power management solutions in BBUs.

1.3 Summary of Contributions

We have studied power management for wireless transmitters, enterprise servers,

virtual machines, and Base Band Units (BBUs) under different power and workload

models. The main contributions of this dissertaion are as following:

1. For real-time embedded system, we formulated the reward maximization prob-

www.manaraa.com

7

lem in wireless networks under delay and energy constraints as a Multidimen-

sional Multi-Choice Knapsack Problem (MMKP). We developed a branch-and-

prune algorithm to solve this problem optimally in pseudo-polynomial running

time. Then we proposed a heuristic approach, named Clustering to approximate

the optimal solution with polynomial time complexity. Simulation results show

the effectiveness of proposed optimal solution and Clustering algorithm. Mean-

swhile, the Clustering approach can closely approximate the optimal solution

at a much smaller computational cost. The results were presented in [50].

2. Circuit board power consumption is still the major resource of system power

consumption and needs to be managed. Thus, to provide a general-purposed

and practical power management solution to networked computing system, we

developed a power management middleware, named PMM, to regulate system

power using circuit board actuators. A real-time power metering tool is devel-

oped and integrated in PMM. This tool can estimate system-level power con-

sumption in a real-time and accurate manner with high accuracy. Meanwhile,

it provides the information of power consumption of subsystems as well. Such

a software-based power metering solution is crucial for the deployment of PMM

in a large scale. We designed PMM using a client-server model. PMM has the

functionalities of power and performance monitoring, power management (PM)

policy selection and control, as well as energy efficiency analysis. A PM policy

library is included in PMM to provide PM policies for different purposes. This

library is flexible to extend. A prototype of PMM is implemented and deployed

on BBUs. To the best of our knowledge, this middleware is the first software to

provide comprehensive and practical solution to power management in BBUs.

Three PM policies for different purposes have been included in the PM pol-

www.manaraa.com

8

icy library of this prototype. These policies have been validated on different

platforms, such as enterprise servers, virtual environments and BBUs.

3. In the enterprise environments, we proposed a system-level power estimation

model for different CPU running speeds and a performance impact model for

a web server by using performance events. Based on these two models, we

developed a model-predictive feedback controller to control system-level power

consumption while maximizing system performance. In contrast to the exiting

feedback control, our proposed approach is more responsive by restricting more

than 75% of power overloading settle to power cap within 2 control periods.

Meanwhile, the system performance degradation is minimal. Details have been

published in [48].

4. To coordinate power and performance in virtualized data centers, we developed

vPnP, a feedback control based coordination system, to provide guarantees on

a service level agreement (SLA) with respect to both performance and power.

In this system, we proposed self-tuning model predictors to estimate the perfor-

mance and power, respectively and a utility function optimizer to achieve differ-

ent levels of tradeoff between power and performance. We implemented vPnP

in a Xen-based infrastructure. The experimental results show the flexibitilty

of vPnP to achieve different levels of tradeoff between performance and power.

Our proposed vPnP system is more robust than existing two-layer feedback

controller over a variety of workloads by reducing as large as 15% performance

deviation. The results were published in [49].

5. To improve energy efficiency in BBUs, we proposed a power management strat-

egy for controlling delay and minimizing power consumption using DVFS. We

use the Robbins-Monro (RM) stochastic approximation method to estimate de-

www.manaraa.com

9

lay quantile. We couple a fuzzy controller with the RM algorithm to obtain the

CPU frequency for the receiver side BBU that will maintain performance within

the specified QoS. This controller is non-workload-specific and self-adaptive.

1.3.1 Outline

The rest of this plan is organized as follows. Chapter 2 reviews the existing work

of power management techniques for wireless transmitters, server environments and

virtual machines.

In Chapter 3, we study the reward maximization problem for wireless real-time

systems. We prove this problem is NP-hard. But by exploiting the properties of the

reward optimization problem, we propose the optimal solution in pseudo-polynomial

time. And we provide a sub-optimal approach with polynomial time complexity.

We developed a power management middleware in Chapter 4 for networked com-

puting systems. It can be easily adapted to different platforms, such as servers and

real-time embedded systems. This power management middleware has the functional-

ities of power and performance monitoring, power management (PM) policy selection

and PM control, as well as energy efficiency analysis. More details of the PM policies

in this middleware will be discussed in Chapter 5, 6, and 7, under different contexts.

In the context of enterprise environments, we develop a model-predictive feedback

controller to control system-level power consumption in Chapter 5. This controller

can dynamically adapt processor frequency to limit system-wide power consumption

within power budget in a responsive manner.

In Chapter 6, we propose a feedback control based coordination system to provide

guarantee in SLA with respect to power and performance in virtualized data centers.

This coordination system includes two adaptive predictors to correlate CPU resource

www.manaraa.com

10

allocation to power and performance. It employs an optimizer to find solution opti-

mizing the utility function of power and performance.

In Chapter 7, We propose a power management strategy for controlling delay and

minimizing power consumption using DVFS for BBUs. We use the Robbins-Monro

(RM) stochastic approximation method to estimate delay quantile. We couple a fuzzy

controller with the RM algorithm to obtain the CPU frequency for the receiver side

BBU that will maintain performance within the specified QoS.

Chapter 8 concludes the dissertation with summary of our work and directions

for future work.

www.manaraa.com

11

Chapter 2

Related Work

This chapter reviews recent research work on power management in networked

computing systems. In the context of real-time embedded system, we discuss the

delay-constrained packet transmission in wireless communications by using packet

transmission speed adaptation. In the enterprise environments, we give an overview

of existing results on controlling system-level power consumption and system perfor-

mance.

2.1 Transmission Speed Adaptation in Communi-

cation Systems

Power consumption in packet transmission can be reduced significantly by trans-

mitting packets at a lower bit rate. Most existing studies on energy-efficient packet

transmission focused on minimizing the energy expenditure subject to a time con-

straint. The time constraint can be in terms of average response time [16, 29, 91]

and a single deadline [44, 104, 121] to all packets. Collins and Cruz proposed optimal

transmission scheme in a fading channel with average delay constraint and a peak

www.manaraa.com

12

transmitter power [29]. They used a simplistic channel model with two-state Markov

chain and assumed the energy expediture is linear with transmitted data. Berry and

Gallager considered the energy minimization problem with average buffer delay in a

block-fading channel [16]. The energy minimization was turned into a convex opti-

mization problem and dynamic programming was used to find the optimal solution.

When the time constraint is considered as a single deadline for all packets, the in-

direct bound on packet delay requires all packets arrive before T to be transmitted

no later than T . Uysal-Biyikoglu et al. [104] proposed off-line optimal and on-line

near-optimal algorithms for a single transmitter-receiver pair. Same delay constraint

was used in their later extension to multiple users [44].

However, both of the above time constraints do not put a limit to response

time of individual packets, which may lead to unexpected large delay. To guar-

antee timely packet deliveries, it is more desirable to put a delay constraint to each

packet [26, 67, 91, 98, 119, 124]. For example, Khojastepour and Sabharwal con-

sidered strict maximum delay constraint for each packet [67]. They established the

connection between maximum delay scheduling and a linear filter for an i.i.d. in-

put. Two optimal scheduling approaches were proposed. One is a time-variant policy

which makes scheduling decisions according to each new packet arrival and uncom-

pleted arrivals in the queue backlog. Zhong and Xu [124] studied delay constrained

packet scheduling with a focus on quality of service control. They derived relation be-

tween maximum packet transmission rate and packet arrival patterns so as to provide

statistical response time and packet drop control.

There are a few existing work studying packet transmission with individual de-

lay constraints to guarantee packet transmission time. A general scenario could be a

wireless transmitter communicates with multiple receivers. The transmitter generates

data periodically and send the data to corresponding receivers. The wireless trans-

www.manaraa.com

13

mitter is powered by renewable energy sources such as solar panel. As a result, the

transmitter needs to finish packet transmission subjected to both delay and energy

constraints. Due to the constraints, it may not be able to send all the data. To ensure

that the most valuable information is transmitted to the receivers, a reward (value)

is associated to each packet. The objective is reduced to maximizing the total reward

under the time and energy constraints. This kind of problems have been investigated

in existing studies [109, 43, 110, 121].

Wang and Mandayam [109] tried to maximize throughput in a block fading chan-

nel under time/energy constraints. They considered a binary rate control with only

an on/off model in which the transmitter either transmits with a constant power or

remains silent. Under the same model and constraints, the authors later considered

the transmission of a fixed size file with the objective to maximizing the probability

of successful delivery of the entire file [110]. Fu et al. tried to maximize throughput in

a fading channel by considering the effect of variable transmission rates [43]. All the

three studies are limited to a single-transmitter-single-receiver scenario. Zhang and

Chanson [121] presented optimal scheduling algorithms for the reward maximization

problem in a scenario of multiple receivers under given time limits and energy con-

straints. They assumed all packets are ready to transmit at beginning time and this

assumption is not applicable to the periodic data model where messages are released

in a regular interval. In addition, they assumed a wireless transmitter with contin-

uous transmission rate while it may only work at a limited number of rate levels in

practice.

www.manaraa.com

14

2.2 Power Management in Enterprise Environments

We will first review the approaches for power consumption measurement, model-

ing and profiling. Then we introduce power management mechanisms. After that,

we discuss the related work from the perspectives of objectives, scopes and method-

ologies.

2.2.1 Power Consumption Measurement, Modeling and Pro-

filing

External power meters (analyzers) connected with the power source can be used

to measure power consumption online. External power measurement may not achieve

a high sampling rate. For example, WattsUp Pro [3] measures RMS power with a

sampling rate of 1Hz and Extech 380801 [4] has a sampling rate of 2Hz. In some

today’s blade, a power measurement circuitry is employed. This kind of in-blade

power monitor firmware can measure the blade’s power with a sampling rate of as

large as 1000Hz [70]. The power consumption can also be measured by employing

resistors connected with the power source and capturing voltage drop across the

resistor using data acquisition (DAQ) hardware.

In addition to measuring the power consumption of a computer in total, we may

also need to know where and when the power/energy has been spent [15]. A variety

of power consumption profiling techniques have been proposed.

Simulation has already employed in profiling power consumption of microproces-

sors [21], memories [20], disks [88], and system-level [51]. However, the main draw-

backs of simulation approaches rely on that the simulation models cannot match the

real systems accurately and simulation itself is time-costly.

Online power measurement can profile the system-level power consumption [70,

www.manaraa.com

15

83, 111]. Bircher and John [18] measured power in five subsystems by employing

resistors connected in series with the power source. The voltage drop across the

resistor is captured by data acquisition (DAQ) hardware with a sampling rate of

10000Hz. However, the online power measurement may not be practical as it needs

dedicated measuring equipments for each machine or physical decomposition of a

machine.

Performance Monitoring Counters (PMCs) can assist power consumption profiling

and modeling, which can be traced back to [15]. Contreras et al. [31] proposed

a linear power estimation model using hardware performance counters to estimate

run-time CPU and memory power consumption using Intel PXA255 processor. The

number of counters used is more than that the processor can provide concurrently

thus this model is not feasible for online power estimation. Fan et al. [40] proposed

a linear model considering CPU utilization and an empirical term which minimize

squared root to improve accuracy. Heath et al. [52] presented a linear model using

disk utilization in addition to CPU utilization. Both models ignore the impact on

power consumption from other subsystems. Bircher and John [18] proposed power

models for entire systems and subsystems using PMCs. It needs to decompose the

measurement of power for each subsystem physically. Economous et al. [36] presented

Mantis providing a full-system power prediction model by adding CPU performance

counters to the OS-reported CPU and disk utilization. Notice although PMCs are

embedded into most current commodity processors, the number of hardware counters

that can be counted concurrently is quite limited without multiplexing technique.

www.manaraa.com

16

2.2.2 Power Management Mechanism

Essentially, power management is done by transitioning hardware components

back and forth between high and low-power states or modes. The components are

fully active and operational in high-power mode while the functionality associated

with the low-power modes depends on the particular component. Switching between

power modes may introduce non-negligible overhead in terms of both energy and

performance [55].

Multiple classes of execution states are supported in today’s server processors for

the purpose of power management. These states include the frequency and voltage

(P-state) in active mode, sleep states (C-states) in idle time, and throttle state (T-

state). Dynamic Voltage and Frequency Scaling (DVFS) is used to switch among

different P-states. DVFS relies on the fact that the dynamic power consumed by mi-

croprocessor is a cubic function of its operating voltage. Thus, reducing the operating

voltage/frequency provides substantial saving in power at the cost of slower execution

[105]. Most of today’s processors have well-documented interfaces for DVFS, such as

AMD’s Cool’n’Quiet technology [10] and Intel’s Enhanced SpeedStep technology [59].

However, the number of voltage or frequency stages is very limited. In multi-core pro-

cessors, it is not flexible to manipulate P-states due to the dependencies among the

cores residing in the same die. T-states can further throttle down a CPU by inserting

stop clock signals and thus omitting duty cycles. The mechanism to enter different

T-states is to manipulate the processor clock modulation setting (throttling) by mod-

ulating the duty cycle of the processor clock, which changes the effective frequency

of the processors [60]. Sleeping states (C-state) can be utilized when the CPU is idle.

In ACPI standard, C0 is the active state and the sleep states are called C1, C2, . . . ,

Cn [55]. The deeper C-state is, the more power the processor can save. C-states can

www.manaraa.com

17

cause relatively large switch overhead and might not be effective when the system is

not idle but in a low utilization state.

Current disks also enable power management by deactivation. In active mode, the

disk is being actively used and consumes more power. In idle mode, the disk can still

spin at its regular speed and accesses can be performed without delay. In low-power

mode, relatively high transition overhead will be involved, such as turning the spindle

motor off (standby) and turning the disk interface off (sleep) [28, 90]. Multi-speed

disk [22] can also be employed to manage power consumption of disk subsystems.

Power dissipated by a memory subsystem largely depends on its capacity and

bus frequency. In practice, the power consumed by periodic refresh is very small.

Most of the power is consumed by row and column decoders, sense amplifiers, and

external bus drivers due to large arrays with very long and high capacitance internal

bus lines. To reduce power consumption, one or more of these subcomponents can

be disabled by switching a device to one of several pre-defined low-power states when

it is not being actively accessed. Memory controllers and chipsets can switch the

subcomponents to low-power states [62] or switch a memory rank’s power on and

off [86]. The non-negligible performance penalty, called re-synchronization cost, is

incurred to transition from current low-power state to an active state before access.

In addition, multi-frequency memory can dynamically scale the working frequency

and consequently the data rate [58].

At system-level, the entire computer can be managed as active, sleep (suspended,

hibernated), and power-off states with time and energy overhead for the transitions

between these states [55].

In virtualized environments, although P-states are still useful to regulate power

consumption when they are enabled, problems might occur when manipulating P-

states. Since multiple virtual machines may share a single core, tuning P-states of

www.manaraa.com

18

a core could threaten desired performance isolation. T-states can further throttle

down a CPU by inserting stop clock signals and thus omitting duty cycles. However,

T-states are not always well documented; access to the T-states may need to modify

the clock modulation register. In contrast, C-states can be utilized when the CPU is

idle. But it incurs relatively large switch overhead and might not be effective when

the system is low utilized. Instead, in virtualized environments, re-allocating CPU

resources, by limiting processing time, to virtual machines can both regulate power

consumption and meanwhile retain performance isolation brought by virtualization.

This functionality is provided by a hypervisor scheduler, such as Credit Scheduler [2]

in Xen [13]. One more important power management mechanism introduced by vir-

tualization is virtual machine migration. Virtual machine migration lead to power

consumption migration. Consolidation enabled by migration can idle servers so that

the idle servers can enter low-power states for more power saving.

2.2.3 Power Management Scope

A lot of existing work focused on how to reduce power consumption by improv-

ing the energy-efficiency of individual server components [69], from processors [54],

memory [39, 86], to disk [126].

At system-level, Lu et al. [76] presented a power reduction technique at OS-

level using task-based power management. Zeng et al. [120] proposed to build an

explicitly energy-aware operating system by introducing a system-wide abstraction for

the energy used. Both work budget the energy available to individual processes. Felter

et al. [41] studied power shifting, a technique to reduce peak power with minimal

performance impact that is based on dynamically re-allocating power to the most

performance critical components. Carrera et al. [22] focused on the disk subsystems,

www.manaraa.com

19

proposed four disk energy management techniques which includes combining laptop

and server-class disks and the use of multi-speed disks.

Previous work [19] shows that the power consumption of processors is usually the

dominant factor of power in servers. This is particular true in dense blade server

environments. Thus, a large number of research work on system-level power man-

agement manipulate system power by DVFS or processor throttling. Elnozahy et al.

[37] presented a soft real-time feedback control-based DVFS policy combined with

request batching. Sharma et al. [99] investigated adaptive algorithms for DVFS in

QoS-enabled web servers to minimize energy consumption subject to service delay

constraints. The control is done at session-level by using synthetic utilization bounds

as control set point for DVFS. The authors also address the impact on energy and

performace due to turning on/off a server in addition to DVFS. In [81], a feedback con-

troller is developed to manage the average power consumption of a laptop to prolong

battery lifetime by DVFS. This study relies on experiments to find the best control

parameters regardless of current system usage which can affect power consumption.

Lefurgy et al. [70] presented a technique to control the peak power consumption of

a server using a feedback controller using processor throttling and precise, system-

level power measurement. This controller is based on the nominal model without

awareness of system behavior, which may lead to a longer settling time in a dynamic

system.

At the cluster or datacenter-level, the goals of power management can be cate-

gorized into two classes: improving energy-efficiency and power capping. These two

categories of work will be discussed later.

www.manaraa.com

20

2.2.4 Power Management Objectives

In general, there are two types of objectives in power management. One focuses

on average power optimization by minimizing the power needed to achieve the per-

formance target. This can be translated to a tracking problem which means the con-

sumed power should track the resource demands of the applications. This optimiza-

tion problem can be translated as improving energy efficiency. Power management for

improving energy efficiency can be conducted for different objectives: minimizing en-

ergy consumption with performance guarantee, maximizing performance under power

budget, and making tradeoff between power and performance. The other category

emphasizes on peak power in order to optimize the power provisioning delivery and

cooling in data centers. This is essentially a capping problem that ensures the power

consumption of a system will not violate a power budget.

Energy Minimization with Performance Guarantee

To improve energy efficiency of a data center, a popular design methodology is

to minimize the energy consumption for processing applications. From data center

administrators’ perspective, a primary concern is application performance, which can

be represented as Quality of Service (QoS), Service-Level Agreement (SLA), etc. It is

required to meet performance target and meanwhile minimize energy consumption.

Early power management study focused on power-on/off scheme. Pinheiro et

al. [89] proposed a load concentration strategy to manage cluster-wide power con-

sumption, in which the nodes in a cluster are turned on or off to ensure the expected

performance is just about acceptable according to the workload.

Recently, DVFS became widely employed because it could provide significant en-

ergy saving while avoiding the comparatively large switching overhead between power-

www.manaraa.com

21

on and power-off states. Sharma et al. [99] investigated adaptive algorithms for DVS

in QoS-enabled web servers to minimize energy consumption subject to service delay

constraints which can be represented by different deadlines for different client classes.

Further, for multi-tier server clusters, for example, a 3-tier web server Horvath et

al. [56] presented a coordinated DVFS strategy.

Horvath et al. extended the work [56] to combine both DVFS and power-on/off

mechanism in a cluster with dynamic configuration [57]. They made performance and

power tradeoff decisions using end-to-end delay as a simple SLA metric and took into

account the overheads for each transition between multiple sleep modes and standby

power levels.

It is observed that the portion of power due to processors is small in comparison

with total system power in some recent clusters. There are still a number of work

using power-on/off mechanism only due to the non-trivial power consumption for

active idle servers. Chen et al. [24] proposed a dynamic provisioning technique to

turn on a minimum number of servers required to satisfy application-specific SLA

with consideration of time taken for turning on/off a server and load dispatching

algorithms.

In virtualization environments, the resource allocation, such as CPU, memory

and disk I/O, to each virtual machine should be taken into account as well in order

to achieve performance guarantee. Wang et al. [113] proposed a two-layer control

architecture to provide response time guarantees for virtualized enterprise servers.

The primary control loop uses a multi-input-multi-output (MIMO) control over CPU

resources to balance load among virtual machines so that they can achieve roughly the

same normalized response time. The secondary loop controls the normalized response

time of all virtual machines to a desired level by DVFS for power efficiency.

There are a few work studying statistical QoS guarantee for power management

www.manaraa.com

22

schemes [118, 56, 71]. Both [56, 71] consider multi-tier web servers enabling DVFS.

However, in [56], the statistical performance guarantee is achieved by a queueing

model which requires a priori knowledge of workload arrival rate and service rate.

In [71], stochastic approximation is coupled with PID feedback controller to guarantee

delay quantile of an unknown distribution. In [118], the statistic correlation between

resource allocation and QoS was studied but this work was limited to the a priori

workload knowledge and simulation.

In addition to control-theoretic approach, there are few work in an attempt to solve

this problem using direct methods, such as reinforcement learning. For example, Tan

et al. [102] proposed an approach to learn the power management policy to minimize

power consumption for a given performance constraint by RL in a model-free manner.

We still believe the indirect methods should be more efficient for this kind of problems.

Performance Maximization under Power Budget

In addition to reducing energy consumption, another energy-efficient design obe-

jective is to control power consumption to adapt to a given power budget so as to

reduce the power (then the performance) of the components when actual power con-

sumption of the server or cluster exceeds the budget [70]. As a result of controlling

power consumption, the performance should be maximized without using power more

than the budget.

For example, given a budget of power, Gandhi et al. [45] studied the problem of

how to allocate power among a server farm so that the performance can be optimized.

A queueing theoretic model is developed to predict the optimal power allocation in a

variety of scenarios. The optimal power allocation scheme depends on many factors,

such as power-to-frequency relationship, the arrival rate of jobs, etc.

Most of the work of performance maximization under power budget have overlap

www.manaraa.com

23

with the solutions to power capping, which will be discussed later.

Tradeoff between Power and Performance

In data centers, it is required to enable resource provisioning in accordance with

flexible SLAs that specify dynamic tradeoff between performance and cost that can

be translated as power consumption. Indirect methods are mostly employed towards

this purpose.

The work [23] by Chase et al. is one of the earliest focusing on energy-conscious

cluster-wide resource management. It is based on an economic model in which the

amount of resource is a function of service quality.

Chen et al. [27] used SLA to direct tradeoff between energy and performance as

well. Unlike [23], they considered power-on/off as well as DVFS. They proposed three

online strategies based on steady state queuing analysis, feedback control theory, and

a hybrid mechanism of both.

Kephart et al. [66] proposed an approach to address tradeoff between power and

performance, which designed an agent to deal with each aspect of system behavior,

such as power, performance and availability. Such a multi-agent approach employs a

utility function defined as a joint of power and performance for tradeoff decision.

Kusic et al. [68] presented an online resource provisioning framework for combined

power and performance management with consideration of switching costs incurred

when provisioning virtual machines. The authors formulated this management prob-

lem as one of sequential optimization under uncertainty and provided a limited looka-

head control approach. This work relies on the workload-specific performance models

requiring a priori workload knowledge.

On another track, virtual machine migration provides an alternative way to save

energy by consolidation which reduces number of hosts. Verma et al. [106, 107, 108]

www.manaraa.com

24

investigated static/semi-static/dynamic job placement to achieve different goals in

power and performance, such as power minimization and performance maximization,

enabled by virtual machine migration.

Power Capping

There are a few work that proposed control-theoretic approaches for power cap-

ping at system-level [70, 48]. Wang and Chen [111] extended the work [70] from single

server to multiple servers. A Multi-Input-Multi-Output (MIMO) control algorithm

is developed to control multiple servers simultaneously. In each control period, the

controller collects the power measurement and CPU utilization of each server, com-

putes a new CPU frequency for each server, and directs the servers to scale CPU

frequencies in a coordinated manner.

At cluster-level, Femal et al. [35] noticed the uneven distribution of workload

among nodes. Thus they allocated power non-uniformly according to demands. A

cluster-level manager collects information of all nodes and allocates power to each

node while satisfying total power budget. A node-level manager allocates power to

each device at a fine level of granularity.

Further, the long-term data from real-world servers have been studied in [94]. Two

trends were summarized: 1) low resource utilization with infrequent and short-lived

bursts; 2) the probability of synchronized spikes on all servers at the same time is

rather low. Based on these observations, Ranganathan et al. [94] proposed a power

budgeting approach across an ensemble of servers by leveraging statistical properties

of concurrent resource usage.

In virtualized environments, the power capping problem is also addressed. Multi-

layer control approach is widely used in this scenario. Nathuji et al. [82] developed a

two-layer feedback controller for power budgeting with QoS management in virtual-

www.manaraa.com

25

ized servers. One loop monitors power consumption and determines a platform-level

CPU allocation to meet power budget. The other loop is distributed across virtual

machines to bid resource based on shadow price for each virtual machine. In [112],

both power budget and performance are guaranteed. The power consumption is

constrained in a cluster-level power control loop by scaling CPU frequency. The per-

formance guarantee is achieved by allocating CPU resources among virtual machines

in a performance control loop.

2.2.5 Power Management Methodologies

Power management methodologies can be categorized into two classes: indirect

methods and direct methods.

Indirect Methods

An indirect method assumes an explicit model to capture the behaviors of a target

system. This method is model-based. It mostly relies on a system identification

procedure to build analytical models of the controlled system and determine the

control rule from the model. Such models can abstract the power consumption and

performance as analytic functions on a set of system and application parameters.

These model can even be used for prediction. Base on the models, both optimization

and control approaches can be applied for power management. The most widely-

used indirect method is the control-theoretic approach. Control theory provides a

powerful mechanism to handle disturbances, uncertainties, and unpredictable changes

in systems using feedback [127].

Lu et al. [77] described a formal feedback control algorithm combined with DVFS

for multimedia systems. Zhu and Muller [128] combined feedback control theory with

www.manaraa.com

26

DVFS schemes for hard real-time systems with dynamic workloads. Both work are

on the processor level without considering system-level power consumption.

Sharma et al. [99] applied control theory to control application-level quality of

service requirements. Chen et al. [27] developed a controller to control SLA, which

is response time, in a server cluster. Both of these work provide no guarantee to the

power consumption of a computing system.

Single-input-single-output (SISO) controller is mostly used when there is only a

single control output employing control over a single resource. Lefurgy et al. [70]

designed a Proportional (P) controller to cap the peak power of a server by throttling

processor. Wu et al. [116] managed power by controlling the synchronizing queues in

multi-clock-domain processors. Zhang et al. [122] adjusted the resource demands of

virtual machines based on resource availability.

Multi-input-multi-output (MIMO) control can be employed when there are mul-

tiple control outputs in power management for enterprise servers, which might need

control over multiple resources. The MIMO control can be translated to an optimiza-

tion problem. Extending the power capping technique in [70] from a single server to

a cluster, Wang et al. [111] developed a MIMO control algorithm for cluster-level

power control in a non-virtualized environment. Kusic et al. [68] presented a power

and performance management strategy using lookahead control. In addition, Kephart

et al. [66] have proposed a coordinated management scheme to achieve tradeoffs be-

tween power and performance by optimizing a utility function for a non-virtualized

server.

Multilayer control can be applied to address similar problems. Representative

work includes [113, 82, 112], which employ two-layer feedback controller. In [113],

one loop controls the CPU resource to each virtual machine to guarantee performance

while the other one controls CPU frequency for power efficiency. In [82], one loop lim-

www.manaraa.com

27

its the power consumption and the other one bids resource based on shadow price for

each virtual machine. However, the work in [113, 82] are either performance-oriented

or power-oriented without explicit coordination of power and performance. In [112],

power and performance can be coordinated using a two-layer feedback controller de-

pending on off-line system identification.

Model Predictive Control (MPC) is quite useful when the control action has dead

times, such as performance impact of an application due to resource re-allocation.

Xu et al. [117] presented an end-to-end QoS provisioning framework to monitor and

control user-perceived QoS. Both work rely on queueing model. To manage power

consumption of enterprise servers, Wang et al. [113] designed a MIMO power control

algorithm based on MPC control theory. Kusic et al. [68] used Limited Lookahead

Control (LLC) to formulate models for the cost of control.

Adaptive control copes with the dynamic of a system by modifying the control law.

To meet the performance SLA, a self-tuning admission controller was designed for a 3-

tier web sites in [64]. In [115], a self-tuning fuzzy controller was proposed to guarantee

client-perceived end-to-end QoS. To manage resource in virtualized environments,

Padala et al. [85] proposed an adaptive estimator to capture the relationship between

allocated system resource and performance. In [63], the Kalman filter was integrated

into feedback controllers to dynamically allocate CPU resources to virtual machines.

There are also a number of challenges when applying control theory to power

management. Modeling is difficult because most inter-relationships in the system

are non-linear. Modeling itself requires system identification which may not cover

all relevant correlations. Classical control theory only deals with continuous inputs

while the input variables for power management can only take on discrete values.

Though adaptive control can deal with dynamic, a limitation still exists on how fast

the workloads or system behaviors can change. In addition, using dynamic models

www.manaraa.com

28

may not provide theoretic guarantee on the properties of controllers.

Direct Methods

In contrast, direct methods determine control rules without needs for an explicit

model of a system. One representative example is reinforcement learning (RL), which

learns the impact on system behaviors, such as performance and power consumption,

due to the action taken on the system, such as power state change. Compared with

control theory, reinforcement learning is model-free. RL is fundamentally a sequential

decision theory that properly treats dynamics in the system. It can improve decision-

making policy over time, similar to adaptive control [101].

Rao et al. [95] proposed a reinforcement learning based approach for virtual ma-

chine configuration which is adaptive to heterogeneous virtual machines. Tesauro et

al. [103] presented a reinforcement learning approach to developing effective control

policies for real-time power management in application servers. Tan et al. [102] pro-

posed a online power management technique using reinforcement learning. The best

power management policy can be learned without knowing the workload information

a priori.

However, there are also a few challenges in reinforcement learning. One is the

tradeoff between exploitation, which is to select from what it already knows, and

exploration, which is to make better action selection from unknowns in the future.

Performance of the initialization phase that explores without any knowledge during

live online training may be unacceptably poor. The convergence is hard to prove and

the convergence rate is low. In addition, RL can suffer from poor scalability in large

state spaces.

www.manaraa.com

29

Chapter 3

Maximizing Rewards in Wireless

Networks with Energy and Timing

Constraints

Energy is a critical resource of wireless devices powered by battery with limited

capacity. Reliable content delivery over a wireless channel is a major source of energy

expenditure. The increasing wireless transmission rate results in an exponential in-

crease of the energy consumption of wireless devices [16]. However, applications are

usually delay-sensitive. With renewable energy resources, such as solar power, wind

power, and mechanical power from the environments, wireless nodes are subjected to

limited amount of energy collected in each period. Meanwhile, wireless nodes powered

by renewable battery often generate a significant amount of data during each cycle.

Due to the limitation of energy and delay, it is often impossible to deliver all the

data generated during each period. Instead, the data with higher level of importance

should have high priority to deliver. A reward is associated to each packet to qual-

ify the level of importance. In this chapter, we will present our solutions to reward

www.manaraa.com

30

Data for receiver 1

Data for receiver 3

Data for receiver 2
Scheduler

Coding
and

Modulation

data size

Figure 3.1: One-transmitter-multiple-receiver model in a single-hop wireless network.

maximization problem in a single-transmitter-multiple-receiver wireless networks with

energy and delay constraints.

3.1 System Model and Problem Formulation

In this part, we first define data and energy consumption models for the reward

maximization problem. Then we present a formulation of the reward maximization

problem under given time and energy constraints.

3.1.1 Data Model

Early studies of energy-efficient problem in wireless networks were largely targeted

at communication channels over a single-transmitter-single-receiver model; see [29]

[16] [104] [43] for examples. A single-transmitter-single-receiver model is also known

as point-to-point communication where there is only one transmitter which will com-

municate with a single receiver. In recent years, we have seen the extension of the

studies to a more general single-transmitter-multiple-receiver model [44] [121] [84]

[125] in which a wireless transmitter communicates with multiple receivers periodi-

cally, as shown in Fig. 3.1. In this model, the transmitter can only communicate with

www.manaraa.com

31

one receiver at a time and has an energy budget in each transmit cycle. Each receiver

will receive data from the transmitter periodically. Every transmitter-receiver pair

has a maximal amount of data to be transmitted in each time period. The receivers

are located with distances from the transmitter. The data to different receivers can

be transmitted at different transmission rates.

We regard the transmission between each transmitter-receiver pair as a periodic

data stream and refer this as a task. It is a sequence of packet transmissions with the

same characteristics that occurs at a regular interval. We use Task = {τ1, τ2, . . . , τN}

to denote the set of N tasks. The number of tasks is always equal to the number

of receivers in our model. All the transmission tasks are assumed to be independent

and preemptive, scheduled by the Earliest Deadline First (EDF) policy [74].

EDF is a popular scheduling policy for delay sensitive wireless packet schedul-

ing [42][119]. We choose EDF as the underlying policy because it has been shown

to be optimal for deadline constrained scheduling over optimal link conditions un-

der various modeling assumptions [47][75]. The preemption can take place between

transmissions of packets of different tasks. Practically, it can be implemented in a

transmitter by re-arranging packets in the transmission buffer by choosing those with

the earliest deadlines. Similar preemptive model was assumed in [42][47][100].

We characterize a task τi by a tuple {Ci, Ti, Di, Pi, Ri}, where Ci denotes the size

of data to be transmitted, Ti is the task period, Pi and Ri are power function and

reward function respectively. The relative deadline Di is assumed to be equal to task

period Ti. We assume for each data stream i, there are several discrete levels of sizes

of data to be transmitted, denoted by {c1
i , c

2
i , . . . , c

K
i }. We have Ci ∈ {c1

i , c
2
i , . . . , c

K
i },

which means the actual amount of data to be transmitted is not always the maximum

and should be determined due to time and energy constraints. In general, the data

stored in the transmit buffer can be either generated by local host or forwarded from

www.manaraa.com

32

other nodes. Different data may have different priorities and rewards related to the

corresponding receiver and data size. For notional brevity, we use τ ji to represent the

task when data cji is selected for transmission.

The transmitter has a set of discrete levels of transmission rates. We define the set

of available transmission rates of a transmitter as Speed = {s1, s2, . . . , sM} in which

the available rates are indexed in an ascending order.

3.1.2 Power Consumption Model

The power consumption of a wireless transmitter can be divided into two parts:

circuit power and transmission power. The transmission power usually dominates

since long-range communications (over 100m) are common in wireless networks. In

order to maintain the same transmission rate, the required transmission power needs

to increase with the distance between the transmitter-receiver pair to offset the propa-

gation loss. In addition, the circuit power is expected to decrease as the IC technology

advances. This part of power only occupies a small portion of the whole power con-

sumption. So in our work, we assume the transmission power dominates the negligible

circuit power.

In our power model, we assume the channel is slowly time-varying, which means

the channel condition will not change during transmission. Proper channel coding can

reduce the energy consumption effectively during transmission. We take the Additive

White Gaussian Noise (AWGN) channel model as an example, which explains how

energy, rate, and data size are related. With optimal channel coding, the maximum

transmission rate is [32]:

www.manaraa.com

33

S =
B

2
log2 (1 +

P ′

N0B
), (3.1)

where S is the transmission rate, P ′ is the received signal power, N0 is the spectral

density, and B is the channel bandwidth. From this equation, we can describe the re-

lationship between the transmission rate S and the received power P ′ by the following

equation:

P ′ = N0B · (2
2S
B − 1). (3.2)

As we aforementioned, the power will increase with distance between transmitter

and receiver in order to maintain the same transmission rate. Considering this power

attenuation, we have:

P =
P ′

A
=
N0B

A
· (2

2S
B − 1), (3.3)

where P is the transmission power and A is the attenuation factor for the transmitter-

receiver pair. The attenuation factor A is generally inversely proportionally to a

function of the distance, denoted by l. For example, this function could be a square

function, A ∝ 1/l2, in [32]. In this work, we do not assume any specific form of

the relationship between attenuation factor and distance except that all transmitter-

receiver pairs have the same fading functions which are only affected by distance.

It is easy to see that the required transmission power P is strictly increasing and

strictly convex in the transmission rate S. This power function P (S) is continuous

www.manaraa.com

34

in S though we only consider the discrete cases for this function in this work.

Let Pi denote the power consumption function for task τi. Let Ci and Si represent

the size and rate of data transmission for τi, respectively. The transmission time to

transmit data Ci equals to Ci

Si
. Therefore it consumes Pi(Si)

Ci

Si
units of energy. The

energy consumed for τi for transmission in one period, denoted by Ei, with data size

Ci at transmission rate Si becomes

Ei(Ci, Si) = Pi(Si)
Ci
Si

=
N0B

Ai
· (2

2Si
B − 1) · Ci

Si
, (3.4)

where the coefficient Ai for each transmitter/receiver pair differs depending on the

distance between them. Similar power models were defined in [121] [125], as well. As

the channel states and receiving nodes are assumed to be static during the transmis-

sion period, the power attenuator factor Ai is also static. We fix the bandwidth B

and assume it is the same for all the streams. To simplify the problem, we assume

the overhead of switch among different transmission rates is tiny and can be ignored.

3.1.3 Problem Formulation

We consider the transmission in a hyper-period T which is defined as the Least

Common Multiple (LCM) of task periods T1, T2, . . . , TN . The consideration of a

hyper-period ensures all tasks can finish their periodic transmissions at least once.

Let Emax represent the units of energy budget allocated to the transmitter during

this hyper-period T . Our objective is to maximize the total reward while all tasks

meet their deadlines and the total energy consumption does not exceed the budget

Emax. In other words, the optimization problem in this work is to find a speed and

a data size for each task to maximize the overall rewards while satisfying delay and

www.manaraa.com

35

energy constraints.

The reward Ri can be a function of multiple variables such as data size, transmis-

sion rate, etc. In this work, we define reward function Ri as a generic function of data

size cji to be transmitted, represented by Ri(c
j
i). It is conceptually the same as the

reward functions in [11][33] and the utility function in [92]. In this work, however, we

do not assume any specific form of the reward function. It can be reduced to different

forms in different application contexts. In its simplest form, the reward function Ri

can be interpreted as the amount of data transmitted, with respect to the data size;

the reward maximization problem is then reduced to throughput maximization, as

in [43] [121]. In an image sensing application, it could be interpreted as the amount

of information transmitted using different image formats [73]. In a file transferring

application, it can be reduced to the probability of successful file delivery [110].

In general, we formulate the reward maximization problem as

maximize
N∑
i=1

T

Ti
Ri(Ci) (3.5)

subject to
N∑
i=1

T

Ti
· Ci
Si
≤ T (3.6)

N∑
i=1

T

Ti
Ei(Si, Ci) ≤ Emax (3.7)

Si ∈ {s1, s2, . . . , sM}, 1 ≤ i ≤ N (3.8)

Ci ∈ {c1
i , c

2
i , . . . , c

K
i }, 1 ≤ i ≤ N. (3.9)

Constraint (3.6) guarantees that all the data streams can be completed under the

EDF scheduling [74]. Whenever there is a schedule that maximizes the reward and

can guarantee all streams transmitted under constraints, we can always convert that

www.manaraa.com

36

schedule to EDF scheduling with the same reward, according to the proof of EDF

optimality in [75]. When all the packets in a hyper period are ready for transmission

at time 0, (3.6) reduces to a discrete case as in [121]. If we enable continuous data

size and transmission rate in (3.8) and (3.9), respectively, this problem is reduced to

a continuous case, similar to that in [121]. In constraint (3.9), we enable multiple

choices of data sizes; the problem is reduced to the one in [97] when we fix available

data size of each task i in constraint (3.9) to be {c1
i , c

2
i }, with c1

i = 0 and c2
i 6= 0,

for all 1 ≤ i ≤ N . Theorem 1 shows the reward-maximization problem for periodical

tasks defined by (3.5)-(3.9) is NP-hard.

Theorem 1. The reward-maximization problem for periodical tasks defined by (3.5)-

(3.9) is NP-hard.

Proof. Let xij and xil denote two 0-1 decision variables, respectively. Let Ωi =

{s1, s2, . . . , sM} and Λi = {c1
i , c

2
i , . . . , c

K
i } for all 1 ≤ i ≤ N . If a task i is assigned to

transmit data at rate j ∈ Ωi, then xij = 1; otherwise, xij = 0. If a task i is assigned

to transmit data with data size l ∈ Λi, then xil = 1; otherwise, xil = 0. The optimal

problem ((3.5)-(3.9)) can be rewritten as:

www.manaraa.com

37

maximize
N∑
i=1

∑
l∈Λi

T

Ti
Ri(Cil)xil (3.10)

subject to
N∑
i=1

∑
j∈Ωi

∑
l∈Λi

T

Ti
· Cil
Sij

xijxil ≤ T (3.11)

N∑
i=1

∑
j∈Ωi

∑
l∈Λi

T

Ti
Ei(Sij, Cil)xijxil ≤ Emax (3.12)

∑
j∈Ωi

xij = 1, 1 ≤ i ≤ N (3.13)

∑
l∈Ωi

xil = 1, 1 ≤ i ≤ N. (3.14)

By viewing T
Ti
Ri(Cil) as the profit of item l out of class i, terms T

Ti
· Cil

Sij
and

T
Ti
Ei(Sij, Cil) as the corresponding weights, the optimal problem formulation ((3.10)-

(3.14)) becomes to an instance of well-known NP-hard Multidimensional Multiple-

Choice Knapsack Problem (MMKP) [65].

3.2 Branch-and-Prune for the Optimal Solutions

A general method of solving the optimal MMKP problem is to search the solution

space until an optimal solution is found and confirmed [65]. We can use breadth-

first search to generate partial solution along with the sequence of receivers. This

algorithm enumerates all possible data sizes and transmission rate for each receiver.

This process can be visualized as a state space branch where each non-leaf node in

this tree has M × K children if there are M transmission rate levels and K data

size levels for each receiver. Therefore a naive algorithm would generate (M × K)i

www.manaraa.com

38

nodes at level i. The state space can grow exponentially with the task number.

To reach the solution in practical run time, most researchers relied on heuristics

to obtain approximated solutions [61][79][93] or adapted approaches to reduce the

computational complexity [34][25][123]. These approaches are not readily applicable

to our problem as our problem involves more decision factors. In the following,

we develop a branch-and-prune algorithm for the reward maximization optimization

problem with 2-dimension multiple choices of data size and transmission rate.

3.2.1 Branch-and-Prune Algorithm

Consider a tuple (r̄ik, t̄ik, ēik) as a state, where r̄ik denotes the reward sum of the

first i tasks corresponding to the accumulated transmission time ūik and energy sum

ēik. We use a list to record all the states of task i

Li = 〈(r̄i1, t̄i1, ēi1), (r̄i2, t̄i2, ēi2), . . . , (r̄ini
, t̄ini

, ēini
)〉,

where ni is the number of states after the ith iteration. Due to the delay and en-

ergy constraints, branching from unpromising states that generate infeasible or non-

optimal solutions can be avoided. We summarize three circumstances, referred to

pruning criteria, in which branches from a certain state will be pruned.

1. Temporal Criterion: The state (r̄ik, t̄ik, ēik) in list Li will be pruned if it satisfies

that

t̄ik +
N∑

j=i+1

T

Tj

Cmin
j

sM
> T.

The inequality means the partial solution will not meet the deadline by trans-

mitting the smallest size of data to the remaining receivers even at the maximal

www.manaraa.com

39

Table 3.1: An example for 4 data streams with 2 data size levels and 2 transmission
rate levels.

Data Stream (r, t, e) at c1 and s1 (r, t, e) at c1 and s2 (r, t, e) at c2 and s1 (r, t, e) at c2 and s2

1 (1,2,1) (1,1,4) (2,4,2) (2,2,8)
2 (1,2,1) (1,1,5) (2,4,2) (2,2,10)
3 (2,2,1) (2,1,4) (4,4,2) (4,2,8)

transmission rate. Therefore the solutions generated from this state are infea-

sible.

2. Energy Criterion: The state (r̄ik, t̄ik, ēik) in list Li will be pruned if it satisfies

that

ēik +
N∑

j=i+1

T

Tj
Ei(s1, C

min
j) > Emax.

The inequality means the partial solution will not meet the energy constraint

by transmitting the smallest size of data to the remaining receivers even at the

minimal transmission rate. Therefore the solutions generated from this state

are infeasible.

3. Dominance Criterion: If two states (r̄ik, t̄ik, ēik) and (r̄ij, t̄ij, ēij) in a list Li

satisfy r̄ik > r̄ij and t̄ik ≤ t̄ij and ēik ≤ ēij, or r̄ik ≥ r̄ij and t̄ik ≤ t̄ij and

ēik < ēij, or r̄ik ≥ r̄ij and t̄ik < t̄ij and ēik ≤ ēij, then the latter state is said to

be dominated by the former one. Intuitively, if a state uses more energy, requires

larger transmission time but achieves smaller reward than another state, it can

always be replaced by the latter state.

In the following, we use an example to show how these three pruning criteria work.

Suppose there are three data streams with two transmission rate levels and two data

www.manaraa.com

40

size levels each, as shown in Table 3.1. Assume the time and energy constraint is

(7, 7). A root node 0 at level-0 is represented by a 3-tuple (0, 0, 0) which means

reward, time, and energy are all zero since no data stream has been enumerated.

Start from the root node, we first enumerate data stream 1. Note that the order of

enumerating the data streams will not have impact on the final solution. Since there

are two transmission rate levels and two data size levels for each data streams, we

have four different nodes generated from root node after enumerating data stream 1,

shown in Fig. 3.2. We label these four nodes at level-1 as 1, 2, 3 and 4.

0,0,00

4321 2,4,21,1,41,2,1 2,2,8

Figure 3.2: Partial state space tree after one enumeration.

Then we proceed to the next level. We examine every node at level-1 and enumer-

ate data stream 2. Start from node 1, we find nodes 1 cannot be pruned based on all

above three pruning criteria. So we can generate 4 new nodes at level-2 from node 1

by enumerating data stream 2 and calculate the 3-tuple (r, t, e) for the new nodes. In

the same way, we can derive another 8 new nodes at level-2 starting from node 2 and

3. Node 4 will be pruned due to energy criterion (the current energy consumption

is 8 which exceeds the energy budget 7). So there will be no level-2 nodes derived

from node 4. After pruning and enumeration, we obtain 12 nodes at level-2, shown

in Fig. 3.3.

When we examine the level-2 nodes, we find node 8, 10, 12, and 16 can be pruned

according to the energy criterion. Node 15 is pruned due to the temporal criterion.

Nodes 6 and 14 will be pruned as well because they are dominated by nodes 9 and 11,

www.manaraa.com

41

4,6,122,4,2 2,3,6 3,6,3 3,4,11 2,3,5 2,2,9 3,5,6 3,3,14 3,6,3 3,5,7 4,8,4

0,0,00

4321 2,2,82,4,21,1,41,2,1

8765 1211109 16151413

Temporal pruning
Energy pruning
Dominance pruning

Figure 3.3: Partial state space tree after two enumerations.

6,8,4 6,6,104,6,3 4,5,6

2,4,2 2,3,6 3,6,3 3,4,11 2,3,5 2,2,9 3,5,6 3,3,14 3,6,3 3,5,7 4,8,4 4,6,12

0,0,00

4321 2,2,82,4,21,1,41,2,1

8765 1211109 16151413

20191817 24232221 28272625 32313029 36353433

7,10,5 6,6,105,8,4 5,7,7 6,7,7 6,5,134,5,6 4,4,9 7,9,8 7,7,145,7,7 5,6,10 7,10,5 7,8,115,8,4 5,7,7

Temporal pruning
Energy pruning
Dominance pruning

Figure 3.4: The complete state space tree by pruning.

www.manaraa.com

42

respectively. Iteratively performing this sequence of steps (nodes generation, 3-tuple

calculation, and pruning), we can obtain all nodes at level-3. Thus we generate the

complete state space tree for the given task set. The complete state space tree is

shown in Fig. 3.4. The generated nodes at level-3 with solid line are feasible solutions

while those with dotted line are infeasible solutions. Among those feasible solutions,

the dark node numbered 27 represents the optimal solution (6, 7, 7) because it has

the largest reward value. The number of final nodes (level-3 nodes) now is 20. It has

been reduced dramatically in contrast to that without any pruning, which is 64.

Algorithm 1 shows the pseudo-code. Initially, we have list L0 with zero reward,

zero time and zero energy. List Li is obtained by the following steps. We first get

a number of lists L′ijk by adding reward, transmission time and energy values of

task i under each data size j ∈ {c1
i , c

2
i , . . . , c

K
i } and each transmission rate k ∈ S to

the states in list Li−1. The component-wise addition is denoted by L′ijk = Li−1 ⊕

(r̄ijk, t̄ijk, ēijk). Secondly, we merge the lists L′ijk into a list L′i in decreasing order

of reward value. Thirdly, we prune all non-feasible state by the Temporal Criterion

and Energy Criterion. Finally, we use the procedure Prune-Lists() to find the un-

dominated states in L′ and returns it as L′′. In this procedure, we check each pair of

states to eliminate the dominated states as many as possible in order to save more

space.

3.2.2 Algorithm Analysis

Now consider the running time for the ith iteration when adding task i. In Algo-

rithm 1, lines 3-7 are linear in the number of the states in L′i, denoted by |L′i|. |L′i|

equals to |L′i−1| multiplied by the number of data sizes and the number of transmis-

sion rates for task i. The time complexity for merging sorting is O(|L′i| log(|L′i|)).

www.manaraa.com

43

Line 9 can be completed in O(|L′i|). Line 10 can be completed in O(|L′i|2) because

we check each pair of states to eliminate the dominated ones. This part dominates

the whole time complexity. As a result, the running time of adding task i is O(|L′i|2).

We denote the upper bound of states in L′i by U , i.e., max1≤i≤N{|L′i|} ≤ U . Thus

an upper bound of running time for adding N tasks is O(NU2). The value of U may

increase significantly with the increase of the size of task set, the number of data size

levels, and the number of transmission rate levels. So this algorithm has a pseudo-

polynomial time complexity. The necessary memory requirement of this algorithm is

bounded by the number of states in a list as well. Since it is not necessary for us to

keep all the lists in the algorithm, the space requirement would be equal to the size

of the last list, which is in the order of O(U).

3.3 Time-Efficient Approximation

Although the above three pruning conditions are effective in removing unpromis-

ing states, the state space in Algorithm 1 can still expand significantly and it will

be computationally expensive to get the optimal solution with a large number of

receivers, data sizes, and transmission rates. In practice, it is not always necessary

to find the optimal solution with limited time and computation resources. A near-

optimal solution is more desirable if it can be completed in reasonable time while

consuming reasonable computation resources.

In this section, we will first propose a polynomial-time heuristic approach. Then

we will analyze the complexity of this algorithm.

www.manaraa.com

44

3.3.1 Polynomial-time Approximated Approach (Clustering)

We develop a heuristic algorithm, named Clustering algorithm, to approximate

the optimal solution to the proposed problem with a polynomial computational time

complexity. This Clustering algorithm is novel for the proposed problem. The general

idea of this algorithm can be traced back to data clustering in mathematics.

This Clustering algorithm is based on a clustering property of the final states after

we enumerate all the tasks. Fig. 3.5 shows the result if we plot the all of the final states

for Table 3.1 after enumerating all possible combination of data sizes and transmission

rates into a 3-D space with the coordinates of (reward, energy, time). We can find

the nodes, representing the final states, are clustered instead of randomly scattering.

This is attributed to the discrete levels of data sizes and transmission rates. Those

nodes in the same cluster tend to have close reward values, energy consumption, and

transmission time. We have similar observations about the intermediate results after

each enumeration.

During each enumeration, if we start from one cluster, the best solution generated

from this cluster will have close reward values. If one node in this cluster can generate

the optimal solution, the others in the same cluster can produce near-optimal solutions

as well. Keep only one node in each cluster and remove the others, we can still get

the near-optimal solution though the optimal solution might be removed. If none of

the nodes in this cluster can lead to the optimal solution, there would be no impact

on the final solution if we keep one and remove the others. The benefit of this method

is that it can reduce the state space significantly.

We create clusters of nodes by dividing the reward value axis and energy axis

evenly to mbins and nbins number of ranges, respectively. Thus we construct mbins×

nbins rectangle prisms (clusters) in a 3-D space. In Fig. 3.5, cluster B represents one

www.manaraa.com

45

3

4

5

6

7

8

9

2

4

6

8

10

12
14

0
5

10
15

20
25

R
e
w
a
rd

Ti
m
e

Energy

cluster A

cluster B

Figure 3.5: The reward-time-energy relationship in a 3-D space.

of the clusters. Suppose the maximal and minimal sums of energy consumption for

all tasks are Emax and Emin, respectively. We set the length of the bottom of the

cluster to be εe = (Emax − Emin)/nbins. Similarly, we set the width of the bottom

of the rectangle prism (cluster) to be εr = (Rmax − Rmin)/mbins, where Rmax and

Rmin are the maximal and minimal sums of reward values for all tasks, respectively.

The scaled reward of task i under data size j, transmission rate k, and reward group

size εr is rounded to the next integer, i.e., d rijk
εr
e, which represents the scaled reward

value in each cluster. In the same way, we can get the rounded scaled energy value,

d eijk
εe
e, which represents energy values in each cluster. We introduce d rijk

εr
e and d eijk

εe
e

into the 3-tuple representing a state in Algorithm 1 to construct a 5-tuple state used

in Algorithm 2.

When enumerating a task, we generate all states for one task with pruning condi-

tions. the Clustering approach divides all the states into buckets, which represent the

clusters, and keep one node for each bucket, as shown in Algorithm 2. In Algorithm 2,

www.manaraa.com

46

the strategy in determining which node should be kept in each cluster depends on the

factor of transmission time. While the nodes in the same cluster have close rewards

and energy consumption, we always want to keep the one with the smallest trans-

mission time in order to save time for the remaining tasks. Besides this strategy, we

have other criteria to decide which node should be reserved in each cluster. Different

metrics, such as energy, reward, and energy-delay product, can be employed. We

conduct simulations to compare the impact of performance when employing different

strategies for selecting representative node in the following evaluation part. Accord-

ing to the evaluation results, we choose time as the only metric for this selection since

it can lead to the best approximation.

Clearly, if the intermediate states themselves can cluster well, it will lead to small

number of non-empty clusters after each enumeration so that the state space can be

reduced more thus the execution time can be shortened. Even in the worst case,

as a result of rounding up and keeping one node per cluster, the number of states

can also be reduced greatly so are the running time and required space to solve

the scaled problem compared with the optimal approach. The number of nodes at

each enumeration is bounded by the largest number of clusters, which is equal to

mbins× nbins.

3.3.2 Algorithm Analysis

For given numbers of ranges for energy and reward, we have the upper bound for

the number of states in each iteration by U = nbins ×mbins. In Algorithm 1, the

running time for adding task i is O(|L′i|2) because we compare each pair of elements

in the list to eliminate the dominated states. Here, we don’t have this step. So

the running time for adding task i is O(|L′i| log(|L′i|)), dominated by sorting. Thus

www.manaraa.com

47

an upper bound of the running time is O(NU logU), where U denotes the upper

bound of states in L′i. Replace U by nbins ×mbins, we get the time complexity of

O(N(nbins ×mbins) log(nbins ×mbins)). Since the values of nbins and mbins are

initialized according to the problem size (see evaluation part) which is determined

by a polynomial function with variables of task set size, data size levels and rate

levels, the total running time cost is polynomial in the size of task set, data size set

and rate set. Similar to Algorithm 1, the space cost is in order of O(U), which is

O(nbins×mbins), as well.

3.4 Performance Evaluation

We simulate the following four algorithms in our experiment:

• Branch-and-prune algorithm for optimal solution: We simulate this algorithm

to obtain the optimal solution for reward maximization problem.

• Polynomial-time Clustering algorithm (Clustering): This is the proposed time-

efficient Clustering algorithm for a near-optimal solution.

• Greedy-pack and greedy-unpack algorithms: These two algorithms are adapted

from [97] as the competitors of proposed polynomial-time Clustering algorithm.

Though the reward maximization problem in [97] is different from that in our

work, the method of designing heuristic approaches is a general principle and

can still be adapted to the problem studied in this work.

We compare the solutions of Clustering, greedy-pack, and greedy-unpack with the

optimal solution obtained by the branch-and-prune algorithm. We use the metric

of normalized system reward to show how close these algorithms can approximate

www.manaraa.com

48

the optimal solution. We study the effect of different parameters on the simulation

results and investigate the execution time cost for different algorithms. We conduct

simulations to show to what degree our proposed branch-and-prune algorithm can

restrict the explosion of state space. In addition, we investigate the impact on ap-

proximation by choosing different numbers of clusters and strategies of representative

node selection for Clustering algorithm.

3.4.1 Simulation Setup

The wireless channel settings we used are similar to those described in [12][121].

The channel bandwidth is 1MHz. The bits per transmission is set to be 1 bit/Hz,

2 bits/Hz, 4 bits/Hz, and 6 bits/Hz (BPSK). Each receiver will receive data from

the transmitter periodically at the above transmission rates. These periodic data

streams are generated based on the following parameters: distance between receiver

and transmitter, the number of different sizes of data to be transmitted, the sizes of

data to be transmitted, period, and reward values. The distances between transmitter

and receivers are uniformly distributed in a range of [20, 200] meters. Under this

setup, a transmission power of 20 mW is required to reliably transmit data at 1

bit/Hz (BPSK) at a distance of 100 m. According to power function (3.3), we can

calculate the power consumption for different receivers with different transmission

rates.

We assumed the number of data size levels to be 5 for all receivers. The data sizes

are uniformly distributed in the range of [1, 16] Mb. The periods for each receiver

can be represented by the number of jobs transmitted to each receiver, denoted by

{job1, job2, . . . , jobN}, within the time interval T . So the period Ti can be calculated

as Ti = T
jobi

. The value of jobi is a random integer value in the range of [1, 12].

www.manaraa.com

49

Based on the above parameters, we can calculate the energy consumptions by the

energy function (3.4). Each receiver has its own reward function. In this simulation,

we define a linear reward function in order of the size of transmitted data. The

coefficient hi for Ri(Ci) = hiCi is the multiplication of hi−1 and a random value in

the range of [1.2, 3.0] for i = 2, 3, . . . , N . The coefficient h1 is a random value in the

range of [0.1, 0.2].

The energy constraint Emax and the length of hyper-period T for a task set are

defined in ways similar to those in [97]. Emax is a multiplication of a parameter

α and E∗, where 0 < α < 1 and E∗ is the total energy consumption for all data

streams to transmit the largest size of data at the largest transmission rate within

the interval, i.e., E∗ =
∑N

i=1 jobiEi(C
max
i , sM). T is the multiplication of a parameter

β and T ∗, where 0 < β < 1 and T ∗ is the total transmission time for all data

streams to transmit the largest size of data at the smallest transmission rate, i.e.,

T ∗ =
∑N

i=1 jobi
CK

i

s1
. A lower value of α means more stringent energy constraint and

a lower value of β means tighter deadline. We refer to α and β as energy constraint

factor and time constraint factor, respectively. In Clustering algorithm, we assumed

nbins = mbins = 10×N × (logM + logK) by default.

3.4.2 Simulation Results

In this part, we firstly study the impact of time and energy constraint factors

on the performance of the four algorithms. Secondly, we investigate the relationship

between the performance and execution time. Thirdly, we further study the effec-

tiveness of our branch-and-prune algorithm for optimal solution. Finally, we simulate

our Clustering algorithm with different parameters to the effect on the extent of the

approximation to the optimal solution.

www.manaraa.com

50

10 20 30 40 50 60 70 80 90

0.75

0.8

0.85

0.9

0.95

1

Energy constraint (%)

A
ve

ra
ge

 n
or

m
al

iz
ed

 s
ys

te
m

 r
ew

ar
d

optimal
Clustering
greedy−pack
greedy−unpack

(a) Energy constraint

10 20 30 40 50 60 70 80 90
0.7

0.75

0.8

0.85

0.9

0.95

1

Time constraint (%)

A
ve

ra
ge

 n
or

m
al

iz
ed

 s
ys

te
m

 r
ew

ar
d

optimal
Clustering
greedy−pack
greedy−unpack

(b) Time constraint

Figure 3.6: Reward under different time and energy constraints.

Impact of time and energy constraint factors

The first experiment is to study the impact of time and energy constraint factors

on the performance. We simulated optimal, Clustering, greedy-pack, and greedy-

unpack algorithms for this reward maximization problem with different time and

energy constraint factors. The system reward normalized to the optimal value is

presented in Fig. 3.6.

Fig. 3.6(a) demonstrates the impact of energy constraint factor on the perfor-

mance. We assumed the number of receivers to be 10 and the time constraint factor

α to be 0.2. We increased the energy constraint factor β from 0.1 to 0.9 with a step

size of 0.1. The normalized reward of Clustering increases with the increase of energy

constraint factor. It is around 95% when β = 0.1 but can reach more than 99% when

β ≥ 0.5. The normalized rewards of two greedy algorithms always have a big gap

larger than 15% from the optimal value even if the energy constraint is loose. The

best normalized reward is bounded by 85%.

Fig. 3.6(b) shows the impact of time constraint factor on the performance. We

www.manaraa.com

51

5 10 15 20 25 30
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of data streams

A
ve

ra
ge

 n
or

m
al

iz
ed

 s
ys

te
m

 r
ew

ar
d

optimal
Clustering
greedy−pack
greedy−unpack

(a) Normalized reward

5 10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

Number of receivers

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

optimal
Clustering
greedy−pack
greedy−unpack

(b) Execution time

Figure 3.7: Reward and execution time with different numbers of receivers.

increased the time constraint factor α from 0.1 to 0.9 with each step equal to 0.1 and

assumed a constant task size of 10 receivers and a constant energy constraint factor

β = 0.2. The results of Clustering are always larger than 95%. With a loose time

constraint, it may increase to more than 99%. We find the normalized system reward

of the two greedy algorithms always has a gap more than 10% from the optimal value

when α is less than 0.4. They increase rapidly with the increase of time constraint

factor and can be more over 99% of the optimal value when time constraint factor

goes beyond 0.4. There are two reasons for this result.

On one hand, we observe the optimal solutions are always the same when β is

fixed to 0.2 and α varies from 0.4 to 0.9. This can be explained as follows. Since

the energy consumption grows exponentially with the increase of transmission rate,

we can decrease the energy consumption greatly by slowing down the transmission

rate if the time constraint is loose, which means linear increase of time can lead to

exponential decrease of energy consumption. In this way, the time constraint has

insensitive impact on the solution. That is why we can see the optimal solutions are

always same since α is 0.4.

www.manaraa.com

52

On the other hand, the greedy algorithms can always have good performance with

a loose time constraint when the only constraint is energy consumption. Since the

only constraint is energy consumption after we loose the time constraint, the greedy

algorithms can have good performance in this case.

As comparison, for the case in Fig. 3.6(a), a loose energy constraint will only lead

to small decrease of time. These two constraints will always have sensitive impact

on the solution though energy constraint is very loose. In simulation, we notice the

optimal solutions are not the same for the cases in Fig. 3.6(a) with different β values.

From these results, we can see Clustering algorithm always obtains near-optimal

solution when the constraints are not very tight. With looser constraints, it can even

achieve the optimal solution.

Performance and execution time

The second experiment is to investigate the performance and execution time for

these four algorithms in this simulation. The simulation was run on a machine with

Pentium D 2.8GHz CPU and 2GB RAM. We assumed both the time and energy

constraint factor to be 0.2. We increased the number of receivers from 5 to 30 with

each step equal to 5.

Fig. 3.7(a) demonstrates the average normalized system reward. The normalized

system reward for Clustering for different task size is typically more than 96% at the

worst case. With more receivers, the normalized system reward will increase and can

reach more than 99%. This is because we set the values of nbins and mbins related

to the number of receivers. The larger these values are, the more precise solution

we can obtain. For greedy-pack and greedy-unpack, the normalized system reward is

usually around 82%− 90%. There is always a gap more than 10% with all task sizes.

We notice these two greedy algorithms usually can reach quite similar solution for the

www.manaraa.com

53

data size and transmission rate in the end although they search for the near-optimal

solution in an opposite way. That is why they have similar normalized system reward.

Fig. 3.7(b) shows the execution time of these four algorithms. It is expected that

the execution time for the optimal solution is the most and increases rapidly with

the increase of the number of receivers. The reason is that the increase of number of

receivers will lead to tremendous increase of the state space though we have already

employed pruning techniques. Compared with the branch-and-prune algorithm for

optimal solution, Clustering can always have tiny execution time cost while achieving

near-optimal solution. It can obtain more than 99% reward while consuming less

than 0.1% of execution time of the optima solution. With the increase of task size,

the execution time of Clustering increases but is still tiny compared with that for

the optimal solution. Greedy-pack and greedy-unpack have very close execution time

costs. They have the smallest cost but much worst performance than Clustering,

shown in Fig. 3.7(a). We notice that the execution time of Clustering is close to

or even smaller than that of the greedy algorithms when the number of receivers is

under 10. It is because the number of clusters in Clustering depends on the number

of receivers. When the number of receivers is small, the number of clusters is small,

which leads to less execution time. While more receivers can lead to more clusters,

more execution time will be consumed. In the case of 30 receivers, the execution time

of Clustering is almost 100 times of that of greedy algorithms.

Combining the results from Section 5.2.1 and Section 5.2.2, we can see Clustering

algorithm can outperform the greedy algorithms in terms of normalized reward. It

is because that Clustering algorithm always keeps intermediate states which lead to

optimal or near-optimal solution when the number of the cluster is large enough. In

the greedy algorithm, when enumerating tasks, only the data size and transmission

rate that can satisfy the criteria or lead to local optimization will be selected. This

www.manaraa.com

54

0 1 2 3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Iteration steps

N
um

be
r

of
 s

ta
te

s

without pruning
time: 0.2 ; energy: 0.2
time: 0.2 ; energy: 0.5
time: 0.2 ; energy: 0.8
time: 0.5 ; energy: 0.2
time: 0.8 ; energy: 0.2

Figure 3.8: Effectiveness of states pruning with 10 periodic data steams.

scheme may be more likely to miss the optimal or near-optimal solution thus leads

to worse performance. From another point of view, the greedy algorithms will reduce

the state space more significantly compared with Clustering algorithm but it suffers

from more opportunities to miss the optimal or near-optimal solutions. In addition,

the increase of the number of receivers will not incur the incredible increase of state

space for greedy algorithms. This explains why the greed algorithms can always have

smallest execution cost in most cases and the execution time for greedy algorithms

will not increase greatly with the number of receivers.

In conclusion, Clustering can balance the tradeoff of the performance and the

running time cost better than the greedy algorithms.

Effectiveness of branch-and-prune algorithm

Fig. 3.8 shows the effectiveness of states pruning when we searched the optimal

solutions for 10 periodic data streams. Simulation results with different time and

energy constraint factors are presented.

In an exhausting search algorithm, the number of states observed in each iteration

www.manaraa.com

55

10
3

10
4

10
5

10
6

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of clusters

A
ve

ra
ge

 n
or

m
al

iz
ed

 s
ys

te
m

 r
ew

ar
d

5 receivers
10 receivers
15 receivers
20 receivers
25 receivers
30 receivers

(a) Impact on accuracy

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

Number of clusters

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

5 receivers
10 receivers
15 receivers
20 receivers
25 receivers
30 receivers

(b) Impact on execution time

Figure 3.9: Impact of number of clusters.

increases rapidly. After we employed pruning criteria, the state space is reduced

dramatically though it is still expanding as more iterations are processed. Especially,

the total number of states is reduced to less than 0.00001% of its original value

when the last iteration is reached. Though the number of states still increases as the

iterations go on, the increasing rate is much smaller than the original one. The state

space generally expands in the enumeration of first several tasks as few nodes can

be pruned by the pruning criteria. More non-feasible states will be pruned as more

tasks are enumerated. With looser time and energy constraints, more states will be

preserved in the space.

Impact of number of clusters for Clustering

In the Clustering approach, the size of state space depends on the number of

clusters, which affects the accuracy of final result. In this part, we will study the

impact of number of clusters on the performance for the Clustering algorithm.

In all the simulations, we assume mbins = nbins, and both the time and energy

constraint factors to be 0.2. First, we study the impact of different number of clusters

www.manaraa.com

56

on the accuracy approaching optimal solution and time cost. We tune the value

of nbins to be 50, 100, 200, 400, 800, which means the numbers of clusters can be

2500, 10000, 40000, 160000, 640000. The number of receivers is increased from 5 to 30

with each step equal to 5. Fig. 3.9 shows the impact of different number of clusters on

both the accuracy and execution time of Clustering algorithm. We notice that both

the normalized system reward and execution increase with the increase of cluster

number in Fig. 3.9(a) and Fig. 3.9(b). This is because larger number of clusters

preserves more states in each iteration. So the states that can lead to optimal or

near-optimal solution will be more likely preserved for future search, which will lead

to more execution time cost. More receivers lead to larger state space. This requires

us to have a large enough number of clusters to get more precise solution. If we set

the number of clusters too small for a large task set, we cannot get the solution close

to the optimal one. For example, we can get the normalized system reward around

99% for the case containing 5 receivers by setting 2500 clusters (nbins = 50). But

the same setting leads to smaller system reward with more receivers. When there are

30 receivers, this setting can only achieve a normalized system reward less than 75%.

So the number of clusters should be chosen carefully with the number of receivers

in order to get near-optimal solution. We conduct simulations to study the impact of

ratio of problem size over cluster number on the performance of Clustering algorithm.

For a problem with N receivers, M rate levels and K data size levels, the size of state

space is (M ×K)N . We define problem size as log(M ×K)N = N × (logM + logK).

We represent the number of clusters by nbins. Then the ratio can be calculated by

N × (logM + logK)/nbins. We set the value of this ratio to be 2, 1, 0.5, 0.1, 0.02.

Clearly, the smaller the ratio, the larger number of clusters. We can see small ratio

can always lead to more accurate result. From Fig. 3.10, we find we can obtain more

than 97% normalized reward if we set the ratio to be 0.1. This can approximate

www.manaraa.com

57

5 10 15 20 25 30
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of receivers

A
ve

ra
ge

 n
or

m
al

iz
ed

 s
ys

te
m

 r
ew

ar
d

ratio=2
ratio=1
ratio=0.5
ratio=0.1
ratio=0.02

Figure 3.10: Impact of ratio of problem size over cluster number.

the optimal solution well. Though a better approximation can be achieved if the

ratio is 0.02, the execution time will increase tremendously. Compromising both the

effect of approximation and execution time cost, in our simulation, we set nbins =

10×N×(logM+logK) to achieve a near-optimal solution with affordable computation

cost.

Strategy of representative node selection

As shown in Algorithm 2, we keep the node with the smallest transmission time

in each cluster. We use this strategy to save time for the remaining tasks. Besides

this strategy, there are other methods to determine which node should be kept in

each cluster. In this part, we conduct simulations to show the results of employing

different strategies to select representative node for each cluster.

We compare four different strategies using different metrics when selecting a rep-

resentative node in each cluster. These metrics are time, energy, reward and energy-

delay product. If we use the metric of time/energy/energy-delay, we will keep the

node with the smallest value of this metric in each cluster. The node with the largest

www.manaraa.com

58

5 10 15 20 25 30
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of receivers

A
ve

ra
ge

 n
or

m
al

iz
ed

 s
ys

te
m

 r
ew

ar
d

time
energy
reward
energy−delay

Figure 3.11: Impact of different strategies selecting representative node.

reward will be kept in each cluster if we use the metric of reward. From Fig. 3.11,

we can see using time as the metric can always guarantee the best performance. It

can achieve a normalized system reward more than 97%, which can beat the second

best strategy significantly, no matter how many receivers are taken into account in

the simulation setup. Based on this result, we always employ time as the only met-

ric when determining which node in each cluster should be kept in our Clustering

algorithm.

www.manaraa.com

59

Algorithm 1 Reward maximization using branch-and-prune.
1: L0 = 〈(0, 0, 0)〉
2: for i=1 to N do
3: for all data size j ∈ {c1

i , c
2
i , . . . , c

K
i } do

4: for all transmission rate k ∈ {s1, s2, . . . , sM} do
5: L′ijk = Li−1 ⊕ (r̄ijk, t̄ijk, ēijk)
6: end for
7: end for
8: merge L′ijk into a list L′i in a decreasing order of reward

9: delete all states in L′i with t̄+
∑N

j=i+1
T
Tj

Cmin
j

sM
> T or ē+

∑N
j=i+1

T
Tj
Ei(s1, C

min
j) >

Emax
10: Li= Prune-Lists(L′i)
11: end for
12: return the largest state in LN

13: procedure Prune-Lists(L′)
14: L′′ = ∅
15: while L′ 6= ∅ do
16: choose and delete the largest state (r̄′, t̄′, ē′) from L′

17: flag = true
18: if L′′ == ∅ then
19: add (r̄′, t̄′, ē′) to the end of list L′′

20: else
21: for all states (r̄′′, t̄′′, ē′′) in L′′ do
22: if (t̄′′ < t̄′ and ē′′ ≤ ē′) or (t̄′′ ≤ t̄′ and ē′′ < ē′) then
23: flag = false
24: break
25: end if
26: end for
27: if flag == true then
28: add (r̄′, t̄′, ē′) to the end of list L′′

29: end if
30: end if
31: end while
32: return L′′

33: end procedure

www.manaraa.com

60

Algorithm 2 A polynomial-time heuristic approach (Clustering).

1: L0 = 〈(0, 0, 0, 0, 0)〉
2: calculate Emin, Rmax and Rmin
3: εr = Rmax−Rmin

mbins

4: εe = Emax−Emin
nbins

5: for i=1 to N do
6: Li = ∅
7: for all data size j ∈ {c1

i , c
2
i , . . . , c

K
i } do

8: for all transmission rate k ∈ {s1, s2, . . . , sM} do
9: L′ijk = Li−1 ⊕ (d r̄ijkεr e, r̄ijk, t̄ijk, d

ēijk
εe
e, ēijk)

10: end for
11: end for
12: merge L′ijk into a list L′i in a decreasing order of scaled reward

13: delete all states in L′i with t̄+
∑N

j=i+1
T
Tj

Cmin
j

sM
> T or ē+

∑N
j=i+1

T
Tj
Ei(s1, C

min
j) >

Emax
14: construct mbins× nbins buckets B1, B2, . . . , Bmbins×nbins
15: for all states st = (d rεr e, r, t, d

e
εe
e, e)in L′ do

16: isNew = true
17: for all non-empty buckets Bi in (B1, B2, . . . , Bmbins×nbins) do
18: select a state st’=(d r′εr e, r

′, t′, d e′εe e, e
′) from Bi

19: if (d rεr e == d r′εr e) and (d eεe e == d e′εe e) then
20: put st into Bi
21: isNew = false
22: break
23: end if
24: end for
25: if isNew == true then
26: put st into an empty bucket
27: end if
28: end for
29: for all non-empty bucket n (B1, B2, . . . , Bmbins×nbins) do
30: select one element with smallest t̄ and add it to the end of Li
31: end for
32: end for
33: return the largest state in LN

www.manaraa.com

61

Chapter 4

PPM: A Power Management

Middleware for Networked

Computing Systems

In networked computing systems, energy saving is always a critical design issue

because of both the cost of electricity bills and the reliability and compliance with

environmental standards. Despite the great engineering and technical advances that

have been made, power management is still necessary to address the energy consump-

tion issue for further possible saving in today’s networked computing systems, from

real-time embedded servers to enterprise servers. Although there are a number of

existing work providing power management strategies to meet different requirements,

the lack of a general framework of power management solutions motivates us to de-

sign and implement a power management middleware, name PPM, for networked

computing systems.

We will present the design of PPM in the scenario of Base Band Units (BBUs).

Currently the wireless service operators are facing serious challenges from surging

www.manaraa.com

62

power consumption and high operating expense of radio access network. For example,

China Mobile’s power consumption doubled in the last 5 years, while over 70% of its

power consumption came from base stations consisting of Radio Remote Units (RRUs)

and Base Band Units (BBUs). In current RAN, BBU usually features hundreds of

watts during the operation, which dominating the power consumption of base stations.

To reduce power consumptions and operating expense of operators, energy saving is

a critical design criteria for BBUs. However, there is few such power management

solutions or frameworks developed for BBUs. It is much more urgent to provide such

a power management middleware for BBUs.

In this chapter, we will first give a brief overview of PPM. Then, we start present-

ing the design issues with one key component, power metering, which is the foundation

of PPM. After that, we will discuss the architecture of this middleware. Finally, we

will leave the details of power management policies to the subsequent chapters.

4.1 Overview

A power management software is required to provide solutions for emerging chal-

lenges in power consumption for BBUs. The crucial criterion for us to design this

power management software is that it should be easily to deploy on different platform

without touching upon the underlying OS or the running workload. So we follow the

design method of a middleware to design this power management software. It can

provide a practical and effective solution for power management for BBUs.

The information of real-time power consumption is necessary for the design and

deployment of power management strategies. As the external power measurement

may not always be available, the fundamental challenges rely on how to obtain power

consumption measurement without external measurement equipment as well as how

www.manaraa.com

63

to quantitatively understand power consumption at a system level. This motivates

us to design and implement a power metering prototype for BBUs. Such a software-

based power metering tool is crucial for the further deployment of PMM in a large

scale. Thus, we decompose PMM into two major parts: real-time power metering

tool and power management middleware.

4.2 Real-Time Power Metering

We designed and implemented a power metering prototype for BBU. The ma-

jor objectives of this tool are two-fold. First, we need a software-based solution to

estimate power consumption for BBU. Without the knowledge of current power con-

sumption of BBUs, the power management policies cannot be accurately applied.

However, the number of BBUs in practice could be huge, it is not feasible to equip

each BBU with its own external power measurement equipment. Thus it is required

to estimate the power consumptions of each BBU in a software manner. Second, un-

derstanding how the workload impacts the power consumption of a system is crucial

to guide the potential energy saving strategies. With external power measurement

equipment, it is still hard to obtain the information of component-level power con-

sumption unless it is allowable to decompose the measurement of power consumption

for each subsystem physically. Our proposed power metering solution provides such

an insight of power dissipation amongst components without physical decomposition

of power measurement.

4.2.1 Design of Power Metering Tool

In general, system power consumption increases with system resource usage. The

system usage can be represented by corresponding system performance metrics. Thus

www.manaraa.com

64

we propose our power metering solution by building such a model correlating system

performance metrics with power consumption. Using this model, we can estimate

power consumption using this power model based on real-time system performance

metrics. There are three major components of this power metering tool, as shown in

Fig. 4.1.

Figure 4.1: Power metering design.

A one-time, offline calibration phase is necessary to obtain the system-wide power

consumption and relevant system performance metrics. This calibration component

should be able to stress each major component in order to find the basic correlation

between its utilization and power consumption. The modeling component is to for-

mulate a power model based on the collected data of power consumption and system

performance metrics. Finally, using this derived power model, the real-time power

consumption can be estimated in the monitoring component. It is the observable

function of power metering tool that we deliver to the end-users.

Clearly, the core of power metering is the modeling component. We will emphasize

on this component.

www.manaraa.com

65

4.2.2 Power Model

The key of power metering is to find the relevant system performance metrics

to represent system power consumption and formulate a power model based on this

correlation. This is the major function of modeling component.

We first describe the target platform. Then we present the methodology to find

the correlated system performance metrics in order to build power model. Finally,

we discuss the training set and construction of power model.

Experiment Platform Selection

We evaluated a number of development kits to select the testbed as the experiment

platform to validate proposed power metering solution for BBUs. The candidacy

testbed should consist of both general-purposed CPU and DSP in order to process

both control-plane and data-plane workloads.

The specific platform we model is Beagle Board [1], which is a low-power and low-

cost single-board computer produced by Texas Instruments (TI) in association with

Digi-Key. Beagle Board is based on an OMAP3530 application processor featuring an

ARM Cortex-A8 running at up to 720MHz and delivering over 1200 Dhrystone MIPS

of performance via superscalar operation with highly accurate branch prediction and

256KB of L2 cache. There are a number of Linux distributions available for Beagle

Board, including Ångström, Debian, Ubuntu, Gentoo, etc.

The specification of its major hardware components can be summarized in Ta-

ble 4.1. Although there are a number of other peripheral connectors provided by

Beagle Board, such as 2 LCD connectors and audio connectors, we only focus on

modeling based on the minimum number of components which implement the key

functionalities of Beagle Board. Those peripheral connectors can considered as sup-

www.manaraa.com

66

Table 4.1: Beagle Board major hardware components specification.

Hardware component Specification

Processor TI OMAP3530 (ARM Cortex-A8 core and TMS320C64x+ DSP)
Memory 256 MB NAND and 256 MB MDDR SDRAM
Storage microSD card slot
Network Ethernet adapter connected with HS USB 2.0 port

plement to the power model when necessary.

We connected the Beagle Board to a power supply with stable voltage. It was

not feasible to employ multimeters for measuring current since their precision is low

and coarse-grained. Thus, we used a sense resistor of low resistance to determine the

current level of the system. The voltage drop was measured across the sense resistor

and sent into a Data Acquisition Card. A National Instruments PCI-6024E DAQ

card was used to sample data at a sampling rate of 1000 Hz, shown in Fig. 4.2. The

sample data can be collected for the purpose of model construction.

DAQ

Power supply with
stable voltage

Beagle
Board

Resistor
(1Ω)

NI DAQ

Figure 4.2: Power measurement circuit.

www.manaraa.com

67

Hardware Component Selection

Different hardware components may contribute different amount of power con-

sumption. It is necessary to determine which components should be taken into ac-

count for power model construction.

The most straightforward solution is by monitoring the system power consumption

variation when we run an individual component intensive application with different

intensity. The assumption here is that the power consumption for other components

should be constant during this stress testing. In practice, this assumption cannot

perfectly hold since the running applications will still involve the usage of other

components slightly. However, this method is applicable to identify the hardware

components that should be considered to build power model.

From our experiments, we found not all the list major hardware components have

significant impact on system power consumption. For example, CPU has the largest

impact while network can only contribute quite a little. We include all these major

hardware components for power model construction.

Performance Metrics Selection

System power consumption varies with system resource usage. Intuitively, more

resource usage leads to larger power consumption. OS-level performance metrics can

represent the resource usage for each component in a fine-grained timely manner.

There are hundreds of performance metrics. Amongst them, we need to select those

most relevant to the system power consumption.

There are a large number of performance metrics reflecting the usage of hard-

ware components. We pre-select a set of them based on our expertise. Then we

further reduce the number of performance metrics that should be used for power

www.manaraa.com

68

model construction. We collected performance metrics and power measurement data

when running different applications stressing different components. We applied two

attribute selection algorithms on this collection of data. One is Best First and the

other is Greedy Stepwise, implemented in Weka [46]. Both algorithms gave the same

result of attribute selection. We will discuss these relevant performance metrics with

their corresponding hardware components in the following.

• CPU: There is a strong correlation between the power consumption and CPU

utilization together with CPU frequency. The relation between power and fre-

quency has been validated to be approximately cubic. In our work, we focus

on build power model with consideration of CPU utilization given a CPU fre-

quency. Admittedly, this model varies with CPU frequency. There are 6 stages

of CPU frequencies for ARM Cortex-A8, from 125MHz to 720MHz. We need

the model for each CPU frequency. Given a CPU frequency, the relevant perfor-

mance metrics of CPU affecting power consumption are CPU utilization (ucpu)

and CPU I/O wait (uiowa). CPU utilization consists of utilizations occurred

while executing at user level, at system level, at user lever with priority, and

to wait for I/O (idle). When the CPU stalls due to an outstanding of disk I/O

requests, the power consumption in the circuit may decrease. So we need to

distinguish this portion of CPU time.

• Memory: The power consumed by periodic refresh is very small. Most of the

power is consumed by memory access (read/write). Usually, the memory activ-

ity is indicated by last level cache (LLC) miss, which is L2 cache miss in our

experimental platform. L2 cache miss implies that memory will be accessed

if L2 cache cannot hold the whole data set for a workload. However, reading

L2 cache miss is costly and may not be acceptable in our platform in order

www.manaraa.com

69

to achieve a fine-grained timely manner. Instead, we use the percentage of

committed memory (umem) to represent the activity of memory. This metrics

indicate the percentage of memory needed for current workload in relation to

the total amount of memory.

• Disk: The power consumption due to disk is related to the disk read/write rate

(udisk). This portion of power consumption is relatively small compared with

overall full system power according to existing research.

• Network: The power consumed on network depends on the network I/O rate

(unet). It is noticeable that the power consumption due to wired network is

insignificant.

Training Suites and Model Derivation

To determine the relationship between performance metrics and power consump-

tion for each relevant hardware components, it is necessary to have a set of training

programs so that performance metrics and power consumption during run can be

logged for model derivation. The workloads in this training set should be able to

stress each individual hardware component without involving other components, ide-

ally. However, this perfect case can never achieved. Instead, we selected individual

component intensive workloads for this set of training suites. In addition to the com-

pleteness, one more concern of the selection of training suites is that the set of training

suites should be easy to be deployed. Specifically, we used qsort in mibench [6] to

stress CPU, memtester to stress memory, dbench to stress disk, and netperf to stress

network, respectively. To accurately model the power consumption in the system idle

case, we should include an idle run into the training suites.

When running the training suites, we use SAR [9] to collect OS-level performance

www.manaraa.com

70

metrics at a sampling rate of 1Hz. We use an external circuit to measure power

consumption of the target system. In practice, due to the limit computation resource

of an embedded device, we drop the work of constructing power model to an auxiliary

server.

We assume the power consumption of a system is the summation of the static

power and the dynamic power due to each hardware components, that is:

Psys = Pcpu + Pmem + Pdisk + Pnet + Pstatic, (4.1)

where Psys is the system power consumption, Pcpu, Pmem, Pdisk and Pnet are the

dynamic power consumption due to each component, respectively, and Pstatic is the

power consumption in the idle state.

We further assume the relationship between the relevant performance metrics and

the corresponding power consumption of each component is linear. Then Eq.(4.1)

can be represented as:

Psys = ccpu ∗ ucpu + ciowa ∗ uiowa + cmem ∗ umem + cdisk ∗ pdisk + cnet ∗ pnet + Pstatic, (4.2)

where ccpu, cmem, cdisk and cmem represents the coefficients of this linear model to

determined for each components.

We used Least Square Regression (LSR) to derive the power model at the auxiliary

server side. For example, the modeled power equation with fixed CPU frequency of

720MHz is:

www.manaraa.com

71

Psys = 0.00496 ∗ ucpu − 0.00348 ∗ uiowa + 0.000507 ∗ umem

+0.000507 ∗ pdisk + 0.000036 ∗ pnet + 1.195095. (4.3)

After the model is derived, it can be sent back to Beagle board to estimate the

power consumption according to the monitored performance metrics. Notice the

power model is related to the CPU frequency. Different power model is needed for

different CPU frequency.

4.2.3 Power Model Evaluation

Test Set Selection

The experimental platform, Beagle Board, is to mimic the real-world Base Band

Units(BBUs). The major function of BBU is signal processing.

Take VoIP application running on OpenBTS [7] for instance. OpenBTS (Open

Base Transceiver Station) is a software-based GSM access point, allowing standard

GSM-compatible mobile phones to make telephone calls without using existing telecom-

munication providers’ networks. It processes the functions from physical layer to

network layer. In the scenario of VoIP application, the data plane tasks to be pro-

cessed on BBU consist of codec/decodec on DSP and packetization/depacketization

on ARM processor. The ideal test set could be a VoIP workload to represent real-

world application.

However, as we haven’t included DSP in our power metering solution, we focus

on the workload on ARM processor partially at first stage. In addition, porting

OpenBTS to Beagle Board is in progress. So we select other relevant compute-bound

www.manaraa.com

72

workloads as the test set.

We validated our proposed power model on three representative telecommunica-

tion applications from mibench: crc32, fft and gsm.

• CRC32: This benchmark performs a 32-bit Cyclic Redundancy Check (CRC)

on a file. CRC checks are often used to detect errors in data transmission. The

data input is the sound files from the ADPCM benchmark.

• FFT(/IFFT): This benchmark performs a Fast Fourier Transform and its in-

verse transform on an array of data. Fourier transforms are used in digital signal

processing to find the frequencies contained in a given input signal. The input

data is a polynomial function with pseudo-random amplitude and frequency

sinusoidal components.

• GSM encode/decode: The Global Standard for Mobile (GSM) communications

is the standard for voice encoding/decoding in Europe and many countries.

It uses a combination of Time- and Frequency-Division Multiple Access (TD-

MA/FDMA) to encode/decode data streams. The input data is small and large

speech samples.

Experimental Results

To quantify the estimation accuracy of this power model, we introduced two met-

rics: mean absolute percentage error (MAPE) and root mean square error (RMSE).

MAPE is defined as the average of the absolute values of the errors, i.e.,

MAPE = avg(
|estimated−measured|

measured
). (4.4)

www.manaraa.com

73

RMSE is employed to study the proportion of the errors. RMSE is defined as the

square root of the mean square error:

RMSE =

√
avg((

|estimated−measured|
measured

)2). (4.5)

We validated the accuracy of power model when we fixed the CPU frequency to

be 720 MHz. This power model is shown in Eq.(4.3). Similar results can be observed

for other CPU frequency settings.

Fig. 4.3 shows the modeled and measured power consumption for each application.

Power consumption is estimated for 1 second interval. Fig. 4.5 depicts the error

histograms. We can see most errors will be limited into 10%.

0 50 100 150 200 250 300
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Times (s)

P
ow

er
 (

W
)

Estimated
Measured

(a) crc32

0 50 100 150 200 250 300
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Times (s)

P
ow

er
 (

W
)

Estimated
Measured

(b) fft

0 50 100 150 200 250 300
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

Times (s)

P
ow

er
 (

W
)

Estimated
Measured

(c) gsm

Figure 4.3: Power estimation of selected applications.

We further show MAPE and RMSE of power model for both training set and

testing set in Fig. 4.5(a) and Fig. 4.5(b), respectively. The 95 percentile error bar

is also shown in Fig. 4.5(a). We can see the average error of this power model can

be bounded to 7%. And RMSE can be limited to 20%. These results indicate high

accuracy of this power metering solution for online power estimation.

www.manaraa.com

74

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Error proportion

F
re

qu
en

cy

(a) crc32

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Error proportion

F
re

qu
en

cy

(b) fft

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Error proportion

F
re

qu
en

cy

(c) gsm

Figure 4.4: Power estimation error proportion of selected applications.

0

2

4

6

8

10

12

14

16

Benchmark

E
rr

or
 (

%
)

overrall
dbench
memtester
netperf
qsort
crc32
fft
gsm

(a) Average error of power model with 95
percentile.

0

1

2

3

4

5

6

7

Benchmark

D
ev

ia
tio

n
(%

)

overrall
dbench
memtester
netperf
qsort
crc32
fft
gsm

(b) RMSE of power model.

Figure 4.5: Average error and RMSE of power model.

4.2.4 Integration with DSP

DSP is included in Beagle Board to accelerate digital signal processing. This

portion of power consumption is noticeable when DSP is used for processing. To

our best knowledge, our work should be the first one to address power model in the

scenario of heterogeneous multicore environment including ARM and DSP. We present

the methodology to estimate this portion of power consumption via experiments.

Then we provide the guideline to refine the existing power model to include DSP.

We conducted experiments to show the impact on power and performance due

to DSP in comparison with ARM processor. The applications/benchmarks selected

for this experiment include matrix multiplication (m-m), and fast Fourier transform

www.manaraa.com

75

Table 4.2: Power consumption and execution time of DSP (in comparison with ARM).

Applications
ARM DSP

Exec time (s) Avg power (W) Exec time (s) Avg power (W)

M-M
600 12.62 1.7611 2.191 1.4123
900 50.47 1.7331 20.517 1.4071
1200 132.12 1.719 49.286 1.3923

FFT
4096 3.595 1.7251 0.5086 1.4432
8192 7.888 1.7385 1.07 1.4353
16384 17.214 1.7064 2.43243 1.4297

(fft). All these applications have two versions. One is to run on ARM processor. The

other is to run on DSP.

Table 4.2 shows the experimental results in terms of execution time and system-

wide power consumption when running applications on DSP and ARM. As these

applications are compute-bound, the processor is always fully utilized. We can see

the power consumption when running on DSP is much less than that on CPU. We

assume the idle power for the system is around 1.2W according to Eq.(4.3). Then

the dynamic power consumption due to running workloads on DSP is around 0.2W,

which is around 17% compared with the idle power. And this portion when running

on ARM can be as large as 45%.

Using DSP can accelerate the execution of compute-bound workloads if DSP li-

brary is used. We can see the speedup when using DSP can be at least 2.5X compared

with the execution time using ARM processor.

From our experimental results, we can see running DSP will always lead to the

increase of system-wide power consumption by around 0.2W. Thus we can assume

that the power consumption due to DSP can be regarded as a constant once it is

running. Thus, we can refined our power model Eq.(5.5) to the following equation:

www.manaraa.com

76

Psys = ccpu ∗ ucpu + ciowa ∗ uiowa + cmem ∗ umem

+cdisk ∗ pdisk + cnet ∗ pnet + cdsp ∗ pdsp + Pstatic, (4.6)

where pdsp is a constant representing the running power of DSP and cdsp is a

{0, 1} variable indicating whether DSP is running or not. However, the current lack

of capability of detecting DSP running, which is due to the limits of up-to-date

experiment environment, restricts us from implementing this solution into our power

metering prototype.

4.3 Power Management Middleware

Power management is always with consideration of performance. To provide the

function of power management in BBUs, we proposed a general-purposed power man-

agement middleware and deployed it on BBUs. It can achieve different levels of

tradeoffs between power and performance upon users’ request.

4.3.1 Architecture

The power management module for BBUs is designed as a middleware which lies

between the application level and OS level. The major function of this middleware

is to provide the functionality to achieve different levels of tradeoff between power

and performance. It also can monitor the power consumption and performance in a

real-time manner. In our testbed, we consider beagle board as the target platform

(BBU). The underlying OS is Ångström7 and the workload running at application

www.manaraa.com

77

level can be data processing for VoIP or streaming applications.

This power management middleware is designed based on a client-server model, as

shown in Figure 4.6. The client side, named Power Management Client (PMC) resides

within the target platform, which is beagle board in our environment. The server side,

named Power Management Server (PMS), can be deployed on an external server or

board. The message passing between PMC and PMS is over a TCP connection. The

reason for us to design PM middleware in a client-server model-based manner is three-

fold. First, this distributed design can alleviate the overhead on the client, which is

the target platform. Second, with this design, sleep state of the target platform can be

applied. Third, this distributed design can be adapted to energy-aware BBU cluster

design in the future.

A
R

FC
N

TR
X

m
an

ag
er

L3

G
SM

L2
LA

PD
m

G
SM

L1
FE

C

SI
PI

nt
er

fa
ce

OpenBTS

ACPI

OS

Power Manager

Perf Monitor

Power
MonitorPM policy

Lib

Power Management Server
Power Management Client

Perf Meter

Sys Perf
Meter

Controller

VoIP/
streaming

traffic

cmd

Sysstat
DVFS DPM

Energy Efficiency Analyzer

Figure 4.6: Architecture of PMM.

www.manaraa.com

78

4.3.2 Design of Power Management Client (PMC)

PMC consists of the following major function units:

• Perf Meter: the input of this meter is the performance reported from applica-

tion layer. The reported performance metrics could be delay, packet loss, etc.

Considering the VoIP application processed by OpenBTS, one of the most im-

portant performance metrics is delay. We consider the delay caused by packet

processing from L1 to L3 as the major performance metric in this scenario. The

output of performance collector is the samples of performance metrics which

will be sent to the Performance Monitor at server side periodically.

• Sys Perf Meter: the input of this meter is the OS-level system performance

metrics reported from the underlying platform. We pre-select which OS-level

metrics should be reported from OS by using sysstat (SAR). These metrics

should be related to the power metering solution that we will use at the server

side. The OS-level performance metrics that need to be monitored include CPU

utilization, memory utilization, network I/O rate, and disk I/O. The current

CPU frequency is also directed to this collector. The output of this collector is

the OS-level metrics with CPU frequency which will be sent to server end for

the purpose of power metering.

• Controller: this component gets the input from Power Manager from PMS. The

input is the power management decision. Then this control component can map

the decision to the action that should be taken by the system. For example,

this action could be frequency scaling using the command:

“echo 550000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling setspeed”,

www.manaraa.com

79

which is to set CPU frequency to 550MHz or entering sleep state by using “echo

mem > /sys/power/state”.

4.3.3 Design of Power Management Server (PMS)

PMS includes the following components:

• Performance Monitor: this monitor can retrieve the performance metrics from

Performance Collector periodically. Then it can get the average performance

for a user-defined period. These performance metrics will be sent to Power

Manager to make the decision of power management.

• Power Monitor: the real-time power consumption can be either measured by an

external power meter or estimated using a power metering tool. In this Power

Monitor, we estimate the power consumption by the OS-level metrics passed

from client side using our power metering tool. The output of this monitor is

the estimate (or real measurement) of current power consumption of the system.

The power consumption is also an input of Power Manager to guide the power

management decision.

• Power Manager: it has two major functions. One is to select the proper power

management policy from PM policy component according to the operators re-

quirement (it can be input from command line). The other is to make power

management decision (determine the CPU frequency or whether to sleep or

wake-up of the BBU) according to the policy and reported performance metrics

as well as power consumption. The performance metrics used in Power Manager

might be normalized according to the pre-defined tolerable threshold.

• PM policy Lib: This power management middleware may contain a number of

www.manaraa.com

80

power management policies for different purposes. We store these policies in

PM policy Lib providing various options of tradeoff between power and QoS.

For example, the policies we consider may include “shallow”, “medium” and

“high” in terms of saving of energy. Currently, we have designed three policies

for this middleware. These policies are to limit power consumption, or provide

power-aware statistical QoS guarantee, or achieve tradeoff between power and

performance. The details of the included power management policies will be

discussed in Chapter 5, 6 and 7 in different contexts.

• Energy efficiency analyzer: This component provides the analysis of energy

consumption saving and performance loss. It obtains power and performance

data from corresponding monitors. Then energy efficiency can be analyzed for

the selected power management policy.

4.3.4 Cross-Layer Message Passing

The message passing from application layer to PMM is the application perfor-

mance. In our testbed, GNURadio [5] is running at application level. The L1 to

L2 packet processing delay could be one important performance metric for power

management decision, which will be sent to Performance Collector in PMC. There

is usually a specific QoS requirement for the performance metrics. This QoS metric,

for example, in terms of delay, is related to the specific application. For example, in

VoIP application, this user-acceptable end-to-end delay is usually 150ms.

OS layer has the interactions with PMM as well. If the power consumption is

estimated by our previous power metering tool, the sysstat (SAR) tool will report

the OS-level performance metrics (CPU, memory, etc.) as well as current CPU fre-

quency periodically to OS Metrics Collector in PMS. When the Control component

www.manaraa.com

81

in PMC gets power management decision from PMS, it will contact OS layer to take

corresponding actions.

We employ a sequence diagram to illustrate the message interactions in PMM. To

simplify the demonstration of these interactions, we only consider how the PM policy

is selected and then the PM decision is made to be sent back to PMC. Figure 4.7

shows the sequence diagram of the message interactions for this case. We don’t

split the PMC into different function components to communicate with PMS for the

simplicity of the diagram. We also omit the interaction between PMC and platform.

We emphasize on the interaction mostly related to PM decision making. Notice the

PM decision will be conducted periodically. In our case, this control interval can be

1 second.

Operator PM Perf Monitor Power Monitor PM policy Lib

sendPMreq

PMpolicyReq

PMpolicySel

getPerf

getPwr

Perf

Pwr

makeDecision

PMpolicy

PM decision

loop

PM Client

startControl

Perf SYSmetrics

pwrMetering

Figure 4.7: Sequence diagram of PM decision making.

www.manaraa.com

82

Chapter 5

System-Level Peak Power

Management

Traditionally, servers are designed to provide for the worst-case scenario by over-

provisioning which adds costs with only few benefits for the real environments. In

contrast, a “better-than-worst-case” design approach has been adopted by limiting

power consumption (power capping) [30]. So that system failure due to power capacity

overload or overheating can be avoided and contractually negotiated system load can

be guaranteed. In addition, power capping is a key element for implementing power

shifting, which is a dynamic setting of power budgets for individual servers so that

a global power cap for a cluster can be maintained. Power consumption relies on

system resource usage. However, system usage is hard to predict in a system with

variability. Feedback control approach is widely used to regulate system configuration

dynamically. In this chapter, we provide a strategy to control system-level power

consumption in an accurate and responsive manner.

www.manaraa.com

83

5.1 Black-box Feedback Control for Power Man-

agement

We first discuss the feedback control in the context of power management. Then

we present the design of a PID controller for power capping.

5.1.1 Overview of Feedback Control

Feedback control is to use measurements of a system’s outputs to adjust the sys-

tem control inputs in order to achieve externally specified goals. In the context of

using black-box feedback control for power management, the output is the measured

power and the reference input is the power cap. The control input, also known as

the control knob, mostly focuses on the power management techniques supported by

processors. This control knob can be frequency and voltage (P-state) using Dynamic

Voltage/Frequency Scaling (DVFS), or sleep states (C-state) that reduce power con-

sumption when parts are idle, or the throttle state (T-state) [70]. In this work, we

use CPU frequency (P-state) as the control knob, called CPU speed. The power is

measured and fed back for use in the control computation to get the control input for

the next control period so that the measured power in the next control period can be

settled to the power cap.

Applying feedback control in power capping, we need to consider the following

properties. First, applying the controller should make the system stable. In a server

with highly variable traffic, the measured power oscillates due to the change of re-

sources required by the traffic. Applying a feedback controller, this oscillation still

exists since the dynamics of the system cannot be removed. This system is Bounded-

Input-Bounded-Output (BIBO) stable since the output is bounded.

www.manaraa.com

84

Second, the measured power can converge to the power cap with the controller,

which is called accuracy. However, it is difficult for a system to always operate

sufficiently close to the power cap due to the system dynamics. In this scenario, we

would emphasize on that the measured power could be settled below the power cap

since the main purpose of the power controller is to avoid power overloading.

Third, this convergence process should be short. The time taken for this process

is the settling time. On one hand, fast settling to power cap when the current power

consumption is below power cap can fully utilize server resources earlier. On the other

hand, responsive adjustment to satisfy power cap when current power consumption

is beyond power cap will reduce the possibilities of both outage and exceeding of

negotiated load. For a web server, this property is of particular importance in the

presence of highly variable traffic. The dynamic of traffic requires different amount of

system resources over time which leads to fluctuation of system power consumption.

In the context of power management in dynamic systems, the settling time would be

emphasized on how long it will take for a system to operate below the power cap in

order to avoid power overloading.

Fourth, using the controller will not let the measured power exceed the power cap

greatly.

The first two properties were widely studied in previous studies while the last two

were overlooked. In our work, we focus on the property of settling time since it is

closely related to the system performance and system failure due to power overloading.

Lefurgy et al. [70] designed a Proportional (P) controller with a first-order delta-

sigma modulator to control peak power for a server, based on a linear model between

maximal power consumption and CPU speed. This controller works well for the

system with static workload. In case of dynamic workloads, this controller may not

perform well; see the following example.

www.manaraa.com

85

550 555 560 565 570 575 580 585 590 595 600
212

214

216

218

220

222

224

226

228

Time (s)
P

ow
er

 (
W

)

power 1s
power cap

Figure 5.1: Example of a long settling time of P controller.

We applied this P controller on a web server running SPECweb2005 benchmark

[8]. SPECweb2005 defines a representative workload cluster of applications for web

servers. The system power consumption changes with workload which can be reflected

by the number of clients. We used the power model for 1500 clients as the nominal

system model and found this P controller theoretically can let power settle in 5 seconds

(assume the control period is 1 second) for the scenario of 900 clients. But from

experiment results, it may take be as long as 8 seconds or even longer to settle power

consumption below power cap, shown in Fig. 5.1. This is due to the variability of

Internet traffic that leads to remarkable variability of power consumption in contrast

to the static power consumption when running CPU-intensive workloads used in [70].

In this case, the controller should not be designed based on the maximal power model.

Using the first-order delta-sigma modulator will scale the CPU speed frequently even

within one control period, which is not expected in a stable system. Thus we design

the controller to limit power consumption without this modulator.

5.1.2 Design of the PID Controller

We design a PID controller, as illustrated in Fig. 5.2, based on the model that

studies the relationship between current power consumption and CPU speeds. This

www.manaraa.com

86

+ -
++

Power cap
(Ps)

KP*e(k)

KD*Δe(t)/Δt

KI*Σe(t)
+

Error
e(t)

Server
CPU speed

Measured
power (P(t))

Figure 5.2: PID based power cap controller.

0 500 1000 1500 2000 2500
0

5

10

15

Time (s)

C
P

U
 s

pe
ed

 s
ta

ge

0 500 1000 1500 2000 2500
220
225
230
235
240
245
250
255
260

P
ow

er
 (

W
)

CPU speed stage
power

0 500 1000 1500 2000 2500
0

10

5

15

Time (s)

C
P

U
 s

pe
ed

 s
ta

ge

0 500 1000 1500 2000 2500
230

240

250

P
ow

er
 (

W
)

CPU speed stage
power

(a) Data used in system identification

225 230 235 240 245 250 255
225

230

235

240

245

250

255

Observed power (W)

P
re

di
ct

ed
 p

ow
er

 (
W

)

power
x=y

(b) Model evaluation

Figure 5.3: Data for system identification and model evaluation.

relationship for a web server running SPECweb2005 with 1500 clients is depicted in

Fig. 5.3(a). Fig. 5.3(a) plots the instant and average power (averaged over a 1-minute

interval) under different CPU speed settings after ramp and warm-up phases. The

CPU speed stage is increased by one stage every 180s.

Let p(k) and s(k) be the power consumption and CPU speed of the server in the

kth control period, respectively. In the kth control period, given p(k), the control

goal is to choose a CPU speed s(k) so that p(k + 1) can converge to the power cap

in a finite number of control periods. We use the differences of p(k) and s(k) with

their operating points to build a linear model. The control output of this model is

p̂(k) = p(k) − p̄, the control input is ŝ(k) = s(k) − s̄, and the desired value of the

control output is P̂s = Ps− p̄, where p̄ and s̄ are operating points, and Ps is the power

www.manaraa.com

87

cap, also known as set point. The operating points are desired steady values of CPU

speed and power consumption in the power management context.The system model

is:

p̂(k) = ap̂(k − 1) + bŝ(k − 1), (5.1)

where a and b are system parameters.

The time domain form of this PID controller is:

ŝ(k) = KP e(k) +KI

k∑
j=1

e(j) +KD[e(k)− e(k − 1)], (5.2)

where e(k) = P̂s − p̂(k), KP , KI and KD are control parameters.

We estimated the system parameters a and b in Eq. (5.1) by system identification

using the nomial model shown in Fig. 5.3(a). The middle value of a range of possible

CPU speed settings is selected as the operating point of CPU speed, s̄, while the

average power consumption under setting is p̄. By system identification, we get the

system parameters for Eq. (5.1), a = 0.4093 and b = 0.6450. Fig. 5.3(b) plots the

measured and predicted power. There are a number of approaches to indicate how

well the model fits. Amongst them, the coefficient of determination is a widely-used

term, denoted as R2. The R2 value in this model is 0.84.

We use Root-Locus method [53] to design this PID controller. Constraining the

settling time to be 1 control period can lead to the maximum overshoot of around

3%. By studying the root locus of this PID controller, we find the settling time can

be 1 if the derivative term is zero or very close to zero. So we set KD = 0. Thus this

PID controller is reduced to a PI controller with KP = 0.6322 and KI = 1.5478. The

www.manaraa.com

88

poles [53] that determine the stability of the closed-loop system are 0.00016±0.0241i,

which are inside the unit circle. Thus this closed-loop system is stable. The accuracy

is guaranteed by the PI controller itself.

We analyzed the performance of this PI controller for the scenarios of 900 and

2100 clients as well. The stability and accuracy are guaranteed. The settling time is

7 for 900 clients and 2 for 2100 clients, similar to the theoretical results using previous

P controller. In practice, we can see this PI controller can lead to shorter settling

time in contrast to the P controller in Section 5.4. However, it may still need more

than 5 seconds occasionally. Thus we need a controller to control system power more

responsively.

5.2 A Gray-box Approach

In this section, we will first present the architecture and basic idea of the gray-

box approach to manage peak power of a web server while maximizing performance.

Then a model-predictive feedback controller is developed based on this approach. We

present the model prediction component of this controller by proposing two models

on which our gray-box approach is based.

5.2.1 Architecture

The architecture of this gray-box approach is shown in Fig. 5.4. It consists of two

loops. One is a feedback loop that sums up the errors between the power cap and

the measured power and adjusts the future CPU speed setting. The other is a model

prediction loop that predicts the control input for the next control period.

The feedback loop employs a controller to sum up the error and adjust the fu-

ture CPU speed. An external power meter is used to measure power. To predict

www.manaraa.com

89

Controller

Model prediction

Server+ -
++

errorPower cap

Measured
power

CPU speed

OS-level metrics
& hardware
performance

counters

Power model Perf prediction
model

Figure 5.4: Power control loop.

the future CPU speed setting, this approach relies on gray-box monitoring to collect

performance events, including both OS-level metrics and hardware performance coun-

ters. A light-weight profiling engine residing in the server was implemented for the

data collection. These collected performance events will be used by a power model

and performance prediction model. The CPU speed for the next control interval is

predicted by estimating power consumption at different speeds based on these two

models. The one which can lead to the largest power consumption but below the

power cap is the predicted speed. This prediction will combine with the adjustment

from error. Thus the CPU speed for the next control period can be determined. Be-

cause of the model prediction function, this approach is proactive, which means it is

not only reactive on the measured power but also can predict the control input based

on the usage statistics.

To distinguish the power controller based on this gray-box approach from other

ones, we name it M-controller since it is a model predictive feedback controller.

www.manaraa.com

90

5.2.2 Controller Design

Based on the results in Section 5.1, the derivative term can be omitted for the

proposed PID controller. Thus, Eq. (5.2) can be re-written as:

s(k) = s̄+KP e(k) +KI

k∑
j=1

e(j), (5.3)

where KI and KP determine the adjustment of the CPU speed corresponding to the

current and past errors. Let f denote a model predictive CPU speed based on the

power model and performance prediction model of a server. It follows that the CPU

speed of the kth control period is:

s(k) = f(k) + αĝ[KP e(k) +KI

k∑
j=1

e(j)], (5.4)

where ĝ is a model-predictive scaling factor of CPU speed with respect to the change

of output error in the power consumption, and α is to tune the weight of this scaling

factor. A controller with a large control factor can respond quickly to the errors. But

it may cause oscillation. To reduce the overshoot, we prefer a smaller control factor

by setting α to be a small value (e.g., α = 0.1).

5.2.3 Model Prediction

The gray-box approach periodically predicts the future power consumption under

different CPU speed settings to improve the controller’s agility by monitoring perfor-

mance events. This prediction is based on two models: power model and performance

prediction model.

www.manaraa.com

91

Power Model

We correlate a few OS-level metrics and hardware performance counters with

power consumption of a system to build a power model. The purpose is to use this

derived model to predict power consumption based on collected performance events.

Economous et al. [36] presented Mantis which provides a fast and accurate full-

system power prediction model by low-overhead OS utilization metrics and perfor-

mance counters. In our work, we adapt the approach in Mantis to construct power

model with more analysis on the details of CPU utilization. We use the following

OS-level metrics and performance counters to construct the power model:

• CPU utilization (ucpu): It consists of utilizations occurred while executing at

user level, at system level, at user lever with priority, and to wait for I/O (idle).

It can be represented by 100%− idle%.

• CPU I/O wait (uiowa): When the CPU stalls due to an outstanding of disk I/O

requests, the power consumption in the circuit will decrease. We distinguish

this portion of CPU time, which is different from Mantis.

• L2 cache miss (uL2miss): Memory will be accessed if L2 cache cannot hold the

whole data set for a workload. This metric indicates the activity of memory.

• Disk read/write rate (udisk): Existing research showed the variation between

power of standby mode and that of active mode is relatively small compared

with overall full system power.

• Network rate (unet): The power consumed on network depends on the network

I/O rate.

We assume this power model is linear as follows:

www.manaraa.com

92

Psystem = C
⊗

U + Pleak, (5.5)

where C =

[
ccpu, ciowa, cL2miss, cdisk, cnet

]
, U =

[
ucpu, uiowa, uL2miss, udisk, unet

]T
, and⊗

is an inner product operator. The measurements of the metrics in vector U will

be discussed in Section 5.3. Clearly, C represents the coefficients of this linear model

to be determined. Different CPU speeds have different power models.

Performance Prediction

The system behaviors would be affected due to CPU frequency scaling, which can

be observed by performance events.

We designed a model to predict the future OS-level metrics and hardware counters

under different CPU frequencies. Let U(k) denote the vector of metrics in the kth

control period. Without loss of generality, we index the elements in U(k) by an

integer from 1, i.e., U(k) =

[
uk1, · · · , ukn

]T
. CPU speed stages are indexed by hi,

i ∈ {1, 2, · · · }. The size of U(k) is determined by the number of metrics monitored.

We conduct the following formula to represent the transition from current metrics

vector to future metrics vector if we change CPU speed from hi to hj:

U(k + 1) = Ai,j × U(k) (5.6)

where Ai,j =


ai,j11 · · · ai,j1n

...
. . .

...

ai,jn1 · · · ai,jnn

.Ai,j defines the effect on metrics if CPU speed is scaled

from fi to fj, which can be obtained using Least Square Method (LSM) given U(k+1)

and U(k).

The transition matrix Ai,j (i < j) can be calculated as:

www.manaraa.com

93

Ai,j = Ai,i+1 ×Ai+1,i+2 × · · · ×Aj−1,j (5.7)

5.3 Model Construction

In this section, we first present the experimental environment for the construction

of the models. Then we show the estimation of parameters of the models.

5.3.1 Experiment Environment

Experiments were conducted on a Dell PowerEdge1950 server with two Intel quad-

core Xeon E5450 processors, 8GB memory, one 250GB SATA hard disk, and 1Gb

Ethernet interface. The processors could be operated at four frequencies ranging

from 2.0GHz to 3.0GHz. All the cores can run at different speed in pair. There are

13 possible CPU speed stages in total, indexing from 1 to 13 in an ascending order.

To scale CPU speed, we can write the new frequency level in to a system file.A BIOS

routine will periodically check this file and reset the CPU frequency accordingly. The

average overhead for the BIOS to change frequency was around 1ms according to our

experimental results.

We patched Linux kernel 2.6.18 with perfctr patch so that we can read hardware

performance counters on-line with relatively small overhead compared with OProfile.

We use SAR to collect run-time OS-level metrics for CPU utilization, hard disk I/O,

and network I/O. The power meter we use to obtain the power consumption value is

WattsUp Pro [3]. This power meter has an accuracy of ±1.5% of the measured RMS

power with sampling rate of 1Hz. The workload was SPECweb2005.

www.manaraa.com

94

5.3.2 Model Parameters Estimation

While modern processors provide counters for measuring a large number of differ-

ent events, the number of events that can be counted concurrently is typically quite

small (2-4) if we don’t use the multiplexing technique. In our experimental environ-

ment with Intel Xeon 5450 Quad core which is Intel Core 2 architecture, there are

only two programmable counters. Since both the L2 cache miss and L1 cache miss can

only be counted in a specific performance counter (pmc0) in Intel Core 2 architecture,

we can only use the counts of L2 cache miss instead of L2 cache miss ratio.

The hard disk will be in standby state if there is no workload for 30 seconds,

typically. In our experiment, SPECweb2005 benchmark will read from hard disk

frequently and let it always be active. The variation of power consumption for hard

disk is very small when it is active. In our power model, we can see the coefficient for

this variable is almost 0. So we can simplify the model (5.5) by removing udisk from

U and cdisk from C.

The related performance events with power consumption were collected during

a set of runs under different CPU speed settings in order to obtain the coefficients

of the power model. We use pace regression to solve this regression problem. Pace

Regression [114] improves on classical ordinary least squares (OLS) regression by

evaluating the effect of each variable and using a clustering analysis to improve the

statistical basis for estimating their contribution to the overall regression. WEKA

[46] provides an API for user to draw the pace regression model from an input data

set. The linear models fit well (R2 > 95%) for all CPU speed stages.

To obtain the transition matrices for power prediction model, We collected traces

by scaling the CPU speed to its next step and scaling back to the original setting pe-

riodically for off-line training when running workload. The difference of performance

www.manaraa.com

95

events between two periods can be attributed to both the CPU frequency scaling and

the change of workload. Due to the variability of the workload, the effect caused by

the workload might not be negligible. Thus we need to pre-process the collected trace

to reduce the noise with the assist of measured power. Since the power consumption

will increase monotonically with scaling up CPU speed in an ideal scenario, we will

remove the data that violate this principle. In addition, we filter the traces by check-

ing the gap between the system power before scaling and that after scaling as well. If

this gap is larger than a threshold, e.g. 5%, relative to before-scaling system power,

we attribute this big gap to the significant variability of workloads and will not use

the corresponding data for training model.

5.4 Evaluation

In this section, we present the experimental results for the gray-box approach.

We validate the power model and performance prediction model. We compare our

approach against several other representative power controllers in terms of respon-

siveness and impact on application performance.

5.4.1 Experimental Methodology

The M-controller was implemented within the controlled server instead of using

another dedicated machine to communicate with the controlled server periodically.

The CPU utilization of running this controller is less than 0.5%.

We conducted experiments to show the responsiveness and impact on applica-

tion performance of M-controller compared with the existing P, PID and an ad-hoc

controller which is a representative industrial power controller. We followed [70] to

design P controller and the PI controller is designed in Section 5.1. The basic idea

www.manaraa.com

96

CPU speed stage

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
or

m
al

iz
ed

 e
rr

or
 (%

)

0

1

2

3

4

5
900 clients
1500 clients
2100 clients

Figure 5.5: Average error of power model.

of ad-hoc controller is to simply raise or lower CPU speed by one step depending

on if the measured power is lower or higher than the power cap. All the controllers

are designed based on the system identification for a run of SPECweb2005 with 1500

clients. The execution time for a run of SPECweb2005 was set to be 5000 seconds

with 180 seconds ramp-up time and 300 seconds warming time. All the controllers

were evaluated in the scenarios of 900, 1500, and 2100 clients. The number of clients

reflects the load and bursts of a server.

5.4.2 Model Validation

Fig. 5.5 shows the accuracy of our proposed power model. The accuracy is defined

as the ratio of the mean absolute error between the predicted power and measured

power to the measured power. For SPECweb2005 benchmark, the average error

ranges from around 1% to 4.8%. The results show this power model can estimate

power consumption accurately based on the collected metrics.

We evaluated the accuracy of the performance prediction model as well. Due to

space limit, we only take one scenario, from speed stage 5 to 6, for example. Fig. 5.6

www.manaraa.com

97

Number of clients

900 1500 2100

N
or

m
al

iz
ed

 e
rro

r (
%

)

0

2

4

6

8

10

12

14
CPU util
CPU iowa
L2 Cache miss
net
Mean

Figure 5.6: Average error of performance prediction model.

shows results of performance prediction. We can see the prediction error on the

metrics related to CPU ranges from around 2% to 6%. The prediction error on other

metrics can be larger than 10%. We use arithmetic mean as a collective metric to

summarize the errors of all elements of the vector due to the linearity of the power

model. The arithmetic mean of normalized error for predicting a vector of metrics

can range from 4% to 8%.

5.4.3 Controller Responsiveness

In this part, we investigated the responsiveness of M-controller in comparison with

other controllers.

The power caps are selected close to the average power of running workload at

the middle CPU speed stage. The power caps are set to be 220W, 240W, and 260W

for 900, 1500, and 2100 clients, respectively. The data were collected after ramp-up

and warming time. We take the scenario of 900 clients for example. The results for

www.manaraa.com

98

490 500 510 520 530 540 550 560 570 580 590 600
205

210

215

220

225

230

235

240

245

250

Time (s)
P

ow
er

 (
W

)

power 1s
power 10s
power cap

Figure 5.7: System power without power controller: 900 clients.

1500 clients and 2100 clients are not presented for brevity since similar observations

can be found.

The power consumption of a server running at full speed without any power con-

troller may exceed the power cap for a long period, shown in Fig. 5.7. Both the

instant power consumption (1 second) and average power consumption (10 seconds)

are plotted. The power consumption would fluctuate due to the high dynamics.

490 500 510 520 530 540 550 560 570 580 590 600
205

210

215

220

225

230

235

240

Time (s)

P
ow

er
 (

W
)

power 1s
power 10s
power cap

(a) System power with ad-hoc control

490 500 510 520 530 540 550 560 570 580 590 600
205

210

215

220

225

230

235

240

Time (s)

P
ow

er
 (

W
)

power 1s
power 10s
power cap

(b) System power with P control

490 500 510 520 530 540 550 560 570 580 590 600
205

210

215

220

225

230

235

240

Time (s)

P
ow

er
 (

W
)

power 1s
power 10s
power cap

(c) System power with PI control

490 500 510 520 530 540 550 560 570 580 590 600
205

210

215

220

225

230

235

240

Time (s)

P
ow

er
 (

W
)

power 1s
power 10s
power cap

(d) System power with M control

Figure 5.8: Performance of controllers: 900 clients.

www.manaraa.com

99

Fig. 5.8 plots the system power when applying controllers. With controllers ap-

plied on 500s, the peak power consumption of a system can be controlled as most

time the average power is below the power cap. Because of the oscillations of power

caused by the workload itself, the system power consumption cannot always stay at

the power cap even with power controllers.

The ad-hoc controller raises or lowers CPU speed by one step at each control

period. Thus it is slow to response the power change. The average power is far below

the power cap, which shows the ad-hoc controller is more conservative. A P controller

can get the system to operate close to power cap faster but it sometimes may need

a long period to settle, e.g., from 552s to 560s in Fig. 5.8(b). A PI controller has

similar effect to the P controller. Using an M-controller can accelerate the process of

settling to power cap while the oscillations still exist. The average power by using

M-controller is close to the power cap and the instant power could be pulled back to

the power cap more quickly when it exceeds the power cap in contrast to those using

P and PI controller.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Length of power violation

C
D

F

P−ctrl
PI−ctrl
M−ctrl
ad−hoc

(a) 900 clients

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Length of power violation

C
D

F

P−ctrl
PI−ctrl
M−ctrl
ad−hoc

(b) 1500 clients

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Length of power violation

C
D

F

P−ctrl
PI−ctrl
M−ctrl
ad−hoc

(c) 2100 clients

Figure 5.9: CDF of length of power violations

To show the responsiveness of these controllers, we analyzed the lengths of power

violations after the controllers have been applied. Power violation is defined as that

the measured power exceeds the power cap. Since the main purpose of these con-

trollers is to limit the power usage, more responsiveness means shorter length of

www.manaraa.com

100

215 220 225217.5 222.5
0

5

10

15

20

25

Power budget (W)

S
lo

w
d

o
w

n
 (

%
)

P−ctrl
PI−ctrl
M−ctrl
ad−hoc

(a) Slowdown: 900 clients

235 240 245237.5 242.5
0

5

10

15

20

25

Power budget (W)

S
lo

w
d

o
w

n
 (

%
)

P−ctrl
PI−ctrl
M−ctrl
ad−hoc

(b) Slowdown: 1500 clients

255 260 265257.5 262.5
0

5

10

15

20

25

Power budget (W)

S
lo

w
d

o
w

n
 (

%
)

P−ctrl
PI−ctrl
M−ctrl
ad−hoc

(c) Slowdown: 2100 clients

Figure 5.10: Impact on application performance

power violations. The effect of settling to power cap when measured power is below

power cap can be reflected in the impact on performance, which is not discussed here.

Fig. 5.9 shows the cumulative distribution function (CDF) of lengths of power viola-

tions for different settings. We can see more than 75% of power violations will have

the length of no longer than 2 for M-controller, which means M-controller is respon-

sive. In case of 900 and 2100 clients, M-controller is more responsive than the others

and PI controller is more responsive than P controller. In case of 1500 clients, we can

see the P and PI controllers are almost as responsive as, or more responsive than M-

controller. It is because these two controllers are built based on system identification

of 1500 clients. Overall, M-controller is the more responsive than others.

5.4.4 Impact on Performance of Application

We investigated the impact of these controllers on the performance of running

application from two perspectives. One is the measured performance directly. The

other is the system power consumption.

Take the scenario of 900 clients for example. We varied the values of power cap

from 215W to 225W in a step length of 2.5W. Fig. 5.10 plots the impact on application

performance in terms of slowdown. Slowdown is defined as a percentage of the average

response time increase compared with that at in a full-speed run. When the power

www.manaraa.com

101

Number of clients

900 1500 2100

A
ve

ra
ge

 p
ow

er
 (W

)

200

220

240

260

280
P-ctrl
PI-ctrl
M-ctrl
ad-hoc

Figure 5.11: Average power.

budget constraint is stringent, the performance degradations for all controllers are

remarkable, which are all over 14%. M-controller outperforms others in terms of

slowdown by 5% when the power budget is 215W. The performance degradation for

all controllers decreases with power budgets. Amongst all controllers, M-controller

leads to the least performance degradation. When the power budget constraint is

loose, the gap among the slowdown of P, PI and M-controller is marginal. Ad-hoc

controller always has the largest performance loss. Similar results can be observed

for the scenarios of 1500 and 2100 clients.

Fig. 5.11 shows the average power consumption for all controllers. A system with

M-controller always has the largest average power.The results validate that more

power lead to better performance. M-controller maximizes the power usage so it

can lead to the least performance degradation. Ad-hoc controller has the smallest

average power which makes it have worst performance. P and PI controllers have

close average power which explains why the performance degradation of these two

controllers are very close.

www.manaraa.com

102

Chapter 6

Automated Coordination of Power

and Performance in Virtualized

Data centers

In Chapter 5, we developed a responsive power management controller to limit

power consumption for an enterprise server. However, in server environments, one

primary concern is the service-level agreement (SLA) in performance. Both power

and performance are important issues in today’s data centers.

With the proliferation of virtualization technology, a number of benefits have

been brought to data centers, such as performance isolation and server consolidation.

Meanwhile, as all co-residing virtual machines (VMs) share a hardware platform,

the power management policies imposed on hardware may affect the performance of

all hosted VMs. It becomes even more complicated with the consideration of time-

varying workloads.

In this chapter, we presented vPnP, a feedback control based coordination system,

to provide guarantees on SLA with respect to both power and performance in vir-

www.manaraa.com

103

tualized environments. This framework provides a feasible and effective solution to

achieving different levels of tradeoff between power and performance in data centers.

6.1 System Architecture

In this section, we first discuss the mechanism to regulate the performance and

power of a server. Then we present the design of our vPnP system with detailed

description of the key components.

6.1.1 Control Power and Performance with VCPU Caps

Multiple classes of execution states are supported in today’s server processors,

which can be used for the purpose of power management. These states include the

frequency and voltage (P-state) in active mode, sleeping states (C-states) in idle

time, and throttle state (T-state). P-states are well documented and can significantly

impact active power consumption. But it has only very limited speed stages. With

the multi-core technology, it is not flexible to manipulate due to the dependencies of

the cores residing in the same die. Things are getting worse when it comes to virtual

environments. Since multiple virtual machines may share a single core, tuning P-

states of a core would threaten desired performance isolation properties. C-states can

be utilized when the CPU is idle. But it leads to relatively large switch overhead and

might not be effective when the system is not idle but in a low utilization. T-states

are not always well documented and may need to modify clock modulation register.

In this work, we regulate the power consumption by re-allocating CPU resources to

virtual machines (VMs).

We assume a hypervisor scheduler to limit processing time to guest VMs. More

specifically, non-work-conserving scheduling is employed so as to allow hardware to

www.manaraa.com

104

enter low-power idle state. This capability is enabled in Xen by capping the CPU

time of VCPUs allocated to a VM. By capping VCPUs, the utilization of underlying

physical processors can be constrained so as to regulate power consumption. In this

work, we use VCPU capping as the actuator for power management.

6.1.2 Design of vPnP

Figure 6.1 shows the architecture of our power and performance coordination

system, named vPnP. A physical server can host multiple VMs on which different

applications are running. A power monitor is employed to measure the power con-

sumption for the whole physical server. The real-time performance of each VM can

be collected by a separate performance monitor. A number of performance data, such

as mean response time, CPU utilization and throughput, can be collected by this per-

formance monitor. In our system, we currently only measure performance in terms of

throughput. All the power and performance data are reported to the resource coor-

dinator synchronously. The power and performance predictors can predict the future

power consumption and performance, respectively. A multi-criteria utility function

is defined to coordinate the power and performance requirement. The ultimate goal

is to find a utility-optimizing policy which will be conveyed to the VM hypervisor to

regulate the VCPU cap for each VM.

Power and Performance Predictor

Since the system behaviors could be non-linear, time-varying and workload-dependent,

it is not accurate to represent the relationship between power/performance and VCPU

cap by a static linear function. One feasible approach to capture the system behav-

ior is to use a linear model to approximate locally on the neighborhoods (operating

www.manaraa.com

105

Physical
Server

VMn
OS

App

VM2
OS

App

VM1
OS

App
….

Power
monitor

Performance
monitor

Resource Coordinator

Power
Predictor

Performance
Predictor

Utility Function Optimizer

Dom0 CPU Resource
Allocator

VM Hypervisor

Figure 6.1: System architecture of vPnP.

www.manaraa.com

106

range) of a point (operating point). In order to let this linear model adapt to different

operating ranges, real-time update of this model is required.

Autoregressive-moving-average (ARMA) models are mathematical models for per-

sistence, or autocorrelation, in a time series. In [85], an ARMA model is used to ap-

proximate the quantitative relationship between allocated resource and the normal-

ized performance. In our work, we extend this model to predict power consumption

of a physical server. A self-adaptive ARMA(2,2) model is defined to represent the

relationship between the power consumption of the physical server and the VCPU

caps of all hosted VMs in a control interval.

Let k denote the kth control interval. p(k) is the average power consumption of

the physical server, C(k) is the vector of VCPU caps of all hosted VMs, gi(k) and

vector HT
i (k) capture the correlation between power and VCPU caps. It follows that:

p(k) =
2∑
i=1

gi(k)p(k − i) +
1∑
i=0

HT
i (k)C(k − i), (6.1)

Let r(k) and c(k) represent the throughput and VCPU cap of a VM, respectively,

ai(k) and bi(k) be time-varying model parameters to capture the relationship between

throughput and VCPU cap. A self-adaptive ARMA(2,2) model which is similar to

that in [85] represents the relationship between throughput and VCPU cap for a VM:

r(k) =

2∑
i=1

ai(k)r(k − i) +

1∑
i=0

bi(k)c(k − i), (6.2)

Notice the model parameters gi(k), HT
i (k) in (6.1), and ai(k), bi(k) in (6.2) vary

in different interval. These parameters will be updated every control period using

www.manaraa.com

107

the data collected in a given range of past intervals, say M intervals, similar to the

sliding window size. These data include the measured performance, power, and CPU

resource allocated to each VM in the past M intervals. Least-square regression can

be used to obtain these model parameters. The assumption to use ARMA model is

that significant workload disturbance, which may lead to tremendous change in the

model parameters estimation, seldom occurs. In this case, the convergence of the

model parameters can be achieved. However, the dynamics of workloads retard this

process. If the workload is changed, the model parameters may not be estimated

accurately during a period. It may take as long as M intervals to get the accurate

model parameters estimation for the system with new workload since all the data

collected for the past M intervals can be replaced. It implies a smaller M is apt to

adapt to the change in the system responsively but it can easily be affected by the

infrequent disturbance.

Utility Function Optimization

Coordinating power and performance for resource allocation can avoid the inef-

fective management caused by the autonomous actions caused by isolated design.

Let r̂i denote the SLA of performance for the ith VM. Let ps denote the power

budget for the physical server. Two step functions are defined to quantify the SLA

of performance and the power consumption:

Θi(ri(k)) =

 1 ri(k) ≥ r̂i;

ri(k)/r̂i otherwise;
(6.3)

www.manaraa.com

108

Γ(p(k)) =

 1 p(k) ≤ ps;

p(k)/ps otherwise,
(6.4)

In our work, a utility function should be defined in such a manner that optimiz-

ing the utility function is to determine the resource allocation to each VM to meet

performance SLAs and power budget. One example of such utility functions is:

U1 = α
n∑
i=1

(1−Θi(ri(k)))2 + (1− α)(Γ(p(k))− 1)2, (6.5)

where the parameter α represents the weight of SLAs of power and performance

for different tradeoffs. The goal is to minimize the utility function (6.5) by finding a

column vector C(k) representing the VCPU caps for all hosted VMs. Intuitively, this

utility function can achieve its optimal value, 0, by meeting both performance SLA

and power budget. In case this optimal cannot be achieved, there is no solution to

guarantee both power and performance. The solution to minimize this utility function

represents the tradeoff of the power and performance.

Another example could be:

U2 = α
n∑
i=1

(Θi(ri(k)))2 − (1− α)(Γ(p(k)))2, (6.6)

Using the function (6.6), the goal is to maxmize the value U2. Besides similar

observation to (6.5), we can see these two utility functions achieve the optimization

goal in different manners in case the optimal cannot be achieved and the power factor

is dominant. (6.5) would be minimized by balancing the performance SLA for each

www.manaraa.com

109

VM in this case while (6.6) would unbalance the performance SLAs. This can easily

be proved by using Cauchy-Schwarz inequality.

A utility function optimizer is designed to determine the VCPU caps to optimize

the defined utility function. Take (6.5) for example, since r1(k), r2(k), . . . , rn(k) and

p(k) can all be represented by linear functions using c1(k), c2(k), . . . , cn(k), the utility

function (6.5) can ultimately be represented by a quadratic functionQ(c1(k), c2(k), . . . , cn(k)).

Thus the VCPU caps can be found by solving the following problem:

minimize Q(c1(k), c2(k), . . . , cnk) (6.7)

subject to clow ≤ ci(k) ≤ cup, i ∈ {1, 2, . . . , n}, (6.8)

Constraint (6.8) ensures the allocated VCPU caps will not be out of the range. In

practice, we set the cup to 100% and clow to be 10% to avoid starvation. The objective

function is quadratic and convex. The ellipsoid method can solve this problem in

polynomial time. In practice, we can use an off-the-shelf quadratic programming

solver to calculate the solution. Similar approach can be applied to the utility function

(6.6). In this case, the objective function is quadratic but not convex. Thus this

optimization problem is NP-hard.

Notice here we treat all VMs with same priority. In order to differentiate the

performance priority, we can add weights to the performance gained in each VM.

6.2 System Implementation

In this section, we present the implementation details of each components in vPnP

as follows:

www.manaraa.com

110

Power monitor: The power consumption of a physical server is measured by

WattsUp Pro [3] power meter. This power meter has an accuracy of ±1.5% of the

measured RMS power with sampling rate of 1Hz. The power measurement data are

sent to the resource coordinator in a real-time manner.

Performance monitor: A small daemon program is running at each application

to record the time stamps of incoming requests. When the request is finished, another

time stamp can be obtained. The difference of time stamps is response time. The

number of requests finished during a unit interval is throughput. In our work, we

only measure performance in terms of throughput. The throughput will be reported

to the resource coordinator every control interval which is 30 seconds.

Resource coordinator: The resource coordinator consists of three parts: per-

formance predictor, power predictor and utility function optimizer. The performance

and power predictors update the control parameters at the end of every control period

using least-square regression. The data in the past 20 intervals will be used in this

regression. The overhead for both regression will be around 10ms. The utility func-

tion optimizer employs an off-the-shelf quadratic programming solver to calculate the

VCPU caps for next interval. The order of magnitude of this calculation overhead is

10ms. The solution will be sent to the CPU resource allocator.

CPU resource allocator: Credit Scheduler [2], Xen’s proportional share sched-

uler, is used to allocate CPU resource. More specifically, we use the VCPU cap to

limit the CPU time that can be allocate to a VM. Though in Credit Scheduler, the

weight can also specify the CPU resource allocation to each VM, we here only use

VCPU cap to implement this allocation by setting same weights to all VMs. Notice

a VCPU cap of 0 means there is no upper cap.

www.manaraa.com

111

6.3 Evaluation

In this section, we present the experimental results for vPnP. We compare vPnP

with the existing two-layer feedback controller, Co-Con [112], from the perspective of

flexibility and robustness of coordinated control of power and performance.

6.3.1 Experimental Methodology

vPnP is evaluated in an experimental testbed consisting of five physical machines

connected through a gigabit networks. Two physical servers are used to host VMs. A

third storage server is used for Network File System (NFS) to host all VM images so

that live migration might be integrated to our system in the future. Each server has

two quadcore processors, Intel Xeon5450, for a total of eight cores. In addition, each

server is equipped with 8GB RAM. CentOS Linux 5.0 with kernel 2.6.18 is running

on all servers. The virtualization is enabled by Xen 3.4.

We selected TPC-W [80] as the host application. TPC-W is an E-Commerce

benchmark that models after an online book store. It provides workloads with differ-

ent mixes. There are three predefined workload mixes: browsing (B), shopping (S)

and ordering (O), indicating different resource requirements. TPC-W consists of two

tiers, i.e., the front application (APP) tier and the back database (DB) tier. Each

tier is hosted in a VM with 2 VCPUs and 2GB memory. Two TPC-W applications

are running in our testbed. We consolidate two DB VMs on a DB HOST and two APP

VMs on an APPS HOST. We only evaluated vPnP on the DB HOST since the DB tiers

are bottlenecks of this application.

In our testbed, the resource coordinator resides in dom0 of APPS HOST in order to

alleviate the computational stress at DB HOST with the consideration of consolidation

as well. The CPU resource allocator resides in dom0 of DB HOST.

www.manaraa.com

112

The client-side workload generators are located on another two servers. The de-

fault concurrency level is 400, 400, and 1000, for browsing, shopping, and ordering,

respectively. The default throughput targets for these workloads with default concur-

rency levels are 1200, 1500, and 3000 per interval, respectively. The clients machines

are guaranteed to be powerful enough to create resource stress on any of the VMs.

We conducted three experiments on the platform.

First, we evaluated the correctness of our self-adaptive power and performance

predictors. Second, we conducted experiments to show the agility of vPnP to achieve

different tradeoffs between performance and power. In case performance and power

cannot be both guaranteed simultaneously, it is desirable to make a balance between

them. This tradeoff can be power-preferred, performance-preferred or other user-

defined criterion. Third, we investigated the robustness of vPnP. vPnP is designed

in a workload-independent manner. It can perform well for different applications or

in the scenarios with dynamics.

We adapted an existing two-layer controller from Co-Con [112] as the baseline.

The controllers were designed using the off-line data during a run of TPC-W with

browsing mix following the methods in [112].

Each run of the workload lasted 200 intervals by default. Since vPnP used the

data of the past 20 intervals for prediction, we started it at the 25th interval. The

results from the 30th interval to the 100th interval will be presented and the results

thereafter will be omitted due to the similarity.

www.manaraa.com

113

50 100 150 200 250 300 350 400
−2000

0

2000

4000

6000

8000

Time intervals (every 30 secs)

T
hr

ou
gh

pu
t

thruput
pred thruput

50 100 150 200 250 300 350 400
200

220

240

260

280

Time intervals (every 30 secs)

P
ow

er
 (

W
)

power
pred power

Figure 6.2: Performance and power prediction.

6.3.2 Experimental Results

Predictor Accuracy

The online performance and power predictors can adapt the model parameters

with the dynamics in the system. The accuracy of these two predictors affects the

CPU resource allocation.

We conducted experiments to show the adaptivity of these two predictors by run-

ning a sequence of different workloads. We allocated the VCPU cap to the VM from

100% to 10% in a step length of 10% every interval back and forth. Starting from

the 90th interval, we change the workload type every 60 intervals (30 minutes) follow-

ing this order: browsing→ shopping→ ordering→ shopping→ browsing→ ordering→

browsing. Figure 6.2 plots the results from the 30th interval to the 410th interval when

all workload changes finish.

To quantify the prediction accuracy of these predictors, we used two metrics,

mean absolute error, defined as
∑n

k=1 |y(k)− ỹ|/n, and error deviation, defined as√∑n
k=1((y(k)− ỹ)/ỹ)2/n, where y(k) is the predicted power/throughput at kth in-

www.manaraa.com

114

Table 6.1: Prediction accuracy.
prediction metrics no change B→ S S→ O O→ S S→ B B→ O O→ B

performance
mean 0.1830 0.2135 0.5252 0.6232 0.2832 0.4526 0.5060

deviation 0.2882 0.2704 0.8592 1.1809 0.3856 0.6433 0.8370

power
mean 0.0192 0.0230 0.0144 0.0213 0.0170 0.0209 0.0188

deviation 0.0251 0.0309 0.0182 0.0251 0.0216 0.0316 0.0248

terval and ỹ is the measured power/throughput. We compared the metrics when the

predictors have already adapted to the workload with those when the predictors are

adapting to the new workload. To adapt to a new workload may take up to M inter-

vals (M is the sliding window size). So we consider these M intervals when workload

changes as the adapting phase. The results are shown in Table 6.1.

The power predictor can predict the power consumption at all the time accurately,

with mean absolute error below 3% and deviation below 0.04. The mean absolute

error for performance prediction may reach around 20% even if there is no workload

change. This is because the power consumption only depends on current resource

utilization and resource allocation. But the performance in terms of throughput will

be affected by the process delay [115] and workload dynamics as well in addition to

the control over resource allocation. Even if the resource allocation remains stable,

the observed performance cannot be as stable as the power consumption due to the

workload dynamics. During the adapting process, the accuracy of performance pre-

diction is impaired. If the workload change is not significant (for example, B→S),

the performance predictor can adapt gracefully to workload change. However, the

performance predictor may take up to the whole adapting phase to adapt to the new

workload in case of significant workload change (for example, S→O).

www.manaraa.com

115

30 40 50 60 70 80 90 100
235

240

245

250

255

260

265

270

275

Time intervals (every 30 secs)

P
ow

er
 (

W
)

power
budget

(a) Power consumption

30 40 50 60 70 80 90 100
200

400

600

800

1000

1200

1400

1600

Time intervals (every 30 secs)

T
hr

ou
gh

pu
t

tpcw1
tpcw2
target

(b) Throughput

30 40 50 60 70 80 90 100
0

20

40

60

80

100

Time intervals (every 30 secs)

V
C

P
U

 c
ap

tpcw1
tpcw2

(c) VCPU cap

Figure 6.3: Results of utility function U1 with performance-preferred policy (α = 0.9).

30 40 50 60 70 80 90 100
230

235

240

245

250

Time intervals (every 30 secs)

P
ow

er
 (

W
)

power
budget

(a) Power consumption

30 40 50 60 70 80 90 100
200

400

600

800

1000

1200

1400

Time intervals (every 30 secs)

T
hr

ou
gh

pu
t

tpcw1
tpcw2
target

(b) Throughput

30 40 50 60 70 80 90 100
0

20

40

60

80

100

Time intervals (every 30secs)

V
C

P
U

 c
ap

tpcw1
tpcw2

(c) VCPU cap

Figure 6.4: Results of utility function U1 with power-preferred policy (α = 0.1).

Tradeoff of Performance and Power

Using vPnP, different tradeoffs between power and performance can be achieved

in an agile way by tuning the weight in the utility function. Using the two utility

functions defined in Section 6.1.2, in case both of power and performance SLAs can-

not be met, the policy depends on the weights in the utility functions. A larger α

represents the tendency to meet the performance SLA while a smaller α means satis-

fying power budget is more important. We defined two policies here for the purpose

of evaluation: performance-preferred (α = 0.9) and power-preferred (α = 0.1). We

conduct experiments using TPC-W browsing workload.

First we applied our vPnP framework using the performance-preferred policy.

Since power is not dominant, vPnP will allocate large VCPU caps to meet perfor-

mance SLA while power consumption is beyond budget. The oscillations of through-

put are caused by both the disturbance of workload and the adjustment to the VCPU

www.manaraa.com

116

30 40 50 60 70 80 90 100
225

230

235

240

245

250

255

Time intervals (every 30 secs)

P
ow

er
 (

W
)

power
budget

(a) Power consumption

30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

Time intervals (every 30 secs)

T
hr

ou
gh

pu
t

tpcw1
tpcw2
target

(b) Throughput

30 40 50 60 70 80 90 100
0

20

40

60

80

100

Time intervals (every 30 secs)

V
C

P
U

 c
ap

tpcw1
tpcw2

(c) VCPU cap

Figure 6.5: Results of utility function U2 with power-preferred policy (α = 0.1).

30 40 50 60 70 80 90 100
220

225

230

235

240

Time intervals (every 30 secs)

P
ow

er
 (

W
)

vPnP
Co−Con
budget

(a) Power consumption

30 40 50 60 70 80 90 100
800

1000

1200

1400

1600

1800

Time intervals (every 30 secs)

T
hr

ou
gh

pu
t

tpcw1
tpcw2
target

(b) Throughput under vPnP

30 40 50 60 70 80 90 100
600

800

1000

1200

1400

1600

1800

Time intervals (every 30 secs)

T
hr

ou
gh

pu
t

tpcw1
tpcw2
target

(c) Throughput under Co-Con

Figure 6.6: Comparison between vPnP and Co-Con running TCPW shopping work-
load.

caps. The utility function U2 performs in a similar way. For lack of space, we omit

this result.

Then the power-preferred policy is employed. Results are shown in Figure 6.5 and

Figure 6.4. Both applications cannot meet the performance SLA mostly but power

consumption is close to the budget. These two utility functions act in different ways.

The utility function U2 would allocate enough VCPU cap to one VM rather than to

allocate CPU resource in a relatively fair manner as the utility function U1 does. For

the sake of fairness, in the rest of experiments, we only use utility function U1.

In contrast, the power control is always primary in Co-Con. It cannot make

tradeoff between power and performance.

www.manaraa.com

117

30 40 50 60 70 80 90 100
205

210

215

220

225

230

Time intervals (every 30 secs)

P
ow

er
 (

W
)

vPnP
Co−Con
budget

(a) Power consumption

30 40 50 60 70 80 90 100
1500

2000

2500

3000

3500

4000

4500

Time intervals (every 30 secs)

T
hr

ou
gh

pu
t

tpcw1
tpcw2
target

(b) Throughput under vPnP

30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

Time intervals (every 30 secs)

T
hr

ou
gh

pu
t

tpcw1
tpcw2
target

(c) Throughput under Co-Con

Figure 6.7: Comparison between vPnP and CoCon running TPC-W ordering work-
load

System Robustness

We investigated the robustness of vPnP by conducting experiments running differ-

ent TPC-W workloads: browsing, shopping and ordering. 2 identical applications will

be hosted for each run. Co-Con is evaluated as a baseline. To make this comparison

fair, we use a strict power-preferred policy for vPnP by setting α = 0.01.

The two-layer controller in Co-Con is designed statically based on the off-line

collected during a run of TPC-W browsing mix. When running shopping and ordering

workloads, we find vPnP can limit the power consumption closer to the budget than

Co-Con. The results are shown in Figure 6.6 and Figure 6.7. The static two-layer

controller in Co-Con cannot adapt its control parameters to the workload change thus

it may not perform well when the workload changes. As vPnP doesn’t rely on any

off-line trained model, it can adapt to a large variety of workloads. Since workload

disturbance and controller both affect the power and performance, the oscillations

occur and it is hard to evaluate directly from the figures.

Thus, to quantify the performance of Co-Con and vPnP, we define relative devia-

tion, which is based on root-mean square error, as the metric. The relative deviation

for power is
√∑n

k=1(p(k)− ps)2/n/ps. Similarly, the relative deviation for through-

put of one application is
√∑n

k=1(r(k)− rs)2/n/rs.

www.manaraa.com

118

browsing shopping ordering
0

0.5

1

1.5

2

2.5

3

Workload types

R
el

at
iv

e
de

vi
at

io
n

(%
)

vPnP
Co−Con

(a) Power deviation

browsing shopping ordering
0

5

10

15

20

25

30

35

40

45

50

Workload types

R
el

at
iv

e
de

vi
at

io
n

vPnP
Co−Con

(b) Performance deviation

Figure 6.8: Performance of vPnP and Co-Con.

The quantified results are shown in Figure 6.8. Both vPnP and Co-Con can

achieve very small relative deviation for power for all workloads. It implies they can

guarantee the power when the power budget is defined within a specific range (we will

see what will happen if power budget varies in a large range). For performance, we can

find Co-Con outperforms vPnP by around 5% when running browsing workload. The

difference is marginal when running shopping workload. Using ordering workload, we

can see the performance relative deviation of vPnP is more than 15% less than that

of Co-Con. Overall, the performance relative deviation of vPnP can be limited to

35% with relatively small variation (less than 15%). To the contrary, the performance

relative deviation of Co-Con may vary over a large range, from 15% to 45%. The

results show the adaptivity of vPnP for a variety of workloads.

In practice, the power budget might change due to thermal condition or temporary

reductions in cooling or power delivery capacity. We investigate how vPnP and Co-

Con reacts to this power budget change. Two TPC-W applications are running

browsing workload in our testbed with initial power budget 240W for DB HOST. From

the 100th interval, the power budget changes every 50 intervals following this order:

240W→230W→240W→250W.

www.manaraa.com

119

60 80 100 120 140 160 180 200 220
220

225

230

235

240

245

250

255

Time intervals (every 30 secs)

P
ow

er
(W

)

vPnP
Co−Con

Figure 6.9: Reaction to power budget change.

As shown in Figure 6.9, when power budget decreases to 230W, Co-Con cannot

limit the power consumption to this budget. It is due to the limited stages of CPU

frequency. Only 4 CPU frequencies are available for Intel Xeon5450 in our testbed.

It limits the range of power control. When the power budget is 240W, the frequency

has already been set to the lowest. If the budget decreases more, Co-Con cannot be

effective to control power since there is no lower frequency can be chosen. In contrast,

vPnP can work in a large range of power budget since it use VCPU cap to regulate

power, which provides a large difference in power consumption between the highest

and the lowest cap.

To sum up, vPnP is more agile than Co-Con since it can achieve different tradeoffs

between power and performance while Co-Con always sticks to the power budget.

vPnP also outperforms Co-Con in terms of robustness over a variety of workloads.

www.manaraa.com

120

Chapter 7

Statistical QoS Guarantee on

Processing Delay in BBUs

In this chapter, we consider the energy efficiency of BBUs supporting soft real-

time applications with guaranteed end-to-end delay. Similar to enterprise web servers,

BBUs are often significantly over-provisioned in order to meet target delay constraints

even under peak loads. However, this design principle suffers poor overall energy

efficiency as BBUs are typically underutilized. When the scale of BBU comes large,

the loss could be huge. Thus, it is desirable for solutions that reduce system’s power

consumption without significant effect on performance guarantees.

We consider the scenario of BBUs running three kinds of workloads: VoIP, Web

and video streaming. Voice application and video streaming can be categorized as

periodic tasks with arbitrary release. Web service application can be regarded as

aperiodic tasks. Soft real-time constraints should be met. That is we need to maintain

user-defined QoS quantile to a set point. The techniques by scheduling on individual

workload is not feasible as only single BBU task processes user workload. Thus we

prefer control-theoretical approach to achieve statistical QoS guarantee in BBUs while

www.manaraa.com

121

minimizing power consumption. This approach should require no a priori knowledge

of workload. In this chapter, we present a power management strategy for controlling

delay and minimizing power consumption using DVFS for BBUs.

7.1 Policy Design

Take the streaming application for example. One of the most concerned perfor-

mance metrics is delay. This delay includes processing delay, queueing delay, trans-

mission delay and propagation delay. We assume the stream sender is very powerful,

such as a blade server. We employ BBUs to receive the packets of streaming. As the

delay on the sender end and propagation delay can be small enough, we only consider

the delay on the receiver side. More specifically, the delay we consider here at receiver

end include queueing and processing delay, which involves demodulation and decode.

There are a few work studying statistical QoS guarantee for power management

schemes [118, 56, 71]. However, these work either rely on a priori knowledge on

workloads [56, 118] or is validated by simulation [118, 71] or is not self-adaptive [71].

To deal with heterogeneous workloads, such a scheme should be adaptive.

We propose a power management strategy for controlling delay and minimizing

power consumption using DVFS for BBUs. We use the Robbins-Monro (RM) stochas-

tic approximation method to estimate delay quantile. We couple a fuzzy controller

with the RM algorithm to obtain the CPU frequency for the receiver side BBU that

will maintain performance within the specified QoS. We use the normalized delay,

which is the ratio of the measured delay to the reference delay, in this design.

www.manaraa.com

122

7.1.1 Robbins-Monro Method

The Robbins-Monro method estimates the quantile of an unknown distribution [96].

We assume M(x) is the expected value at x of the system delay, where M is a mono-

tone function of x. For each x there corresponds a random variable Y = Y (x) with a

distribution function Pr[Y (x) ≤ y] = H(y|x), such that

M(x) =

∫ ∞
−∞

y dH(y|x). (7.1)

Let F(x) be an unknown distribution function, and

F (Θ) = α(0 < α < 1), F ′(Θ) > 0, (7.2)

or equivalently,

Pr[F ≤ Θ] = α, (7.3)

where α is the desired delay quantile.

Adapted from [17], we let z(t) be the independent random variable and the out-

come of the experiment, the delay, in our case, with distribution function Pr[z(t) ≤

x] = F (x), and let y(t) be defined as:

y(t) =

 1 z(t) ≤ x(t);

0 otherwise.
(7.4)

Notice we only simply use a binary metric {0, 1} to indicate whether the delay

has met the requirement or not. The reason to employ this binary metric is that we

only concern whether the delay requirement has been satisfied for single request or

www.manaraa.com

123

the requests during an interval instead of indicating how close the delay is to meet

the requirement. To further investigate how close the delay is, we need to study the

statistics or quantile of the delays. This is the major motivation for us to design

this controller with statistic QoS guarantee while minimizing power consumption. In

addition, the definition of y(t) depends on the performance metric. In the scenario

of a streaming server, the performance metric can be frames per second (fps) thus

a different definition of y(t) should be given, which will be shown in the evaluation

section.

Let x(0) be an initial guess of Θ, and let

x(t+ 1) = x(t) + a(t) · (α− y(t)), (7.5)

where a(t) should satisfy that 0 <
∑∞

1 a2
t = A <∞, and

∑∞
2

at
a1+···+at−1

=∞. It can

then be proven that M(x) = F (x) and that lim
t→∞

x(t) = Θ.

The sequence {x} can be proven to converge to Θ as the solution to Pr[X ≤

Θ] = α. The parameter a(t) can be set two ways: (a) decreasing as t goes to infinity,

with some restrictions to guarantee convergence, as true to the original form of the

Robbins-Monro method, or (b) to a small fixed value ε. We use the latter in order to

assure that the system can adapt to changing distributions arising from time-varying

workloads.

Notice the above formulation is based on the assumption that only a single request

is submitted at time t, such as batch jobs. However, this assumption may not always

hold. For example, multi-threaded web applications make it impossible to split each

request without overlap. In the context of packet processing, as there would be

hundreds and thousands of packets processes per second, it is too costly to adjust

CPU frequency upon the completion of each packet. Instead, we prefer the delay of

www.manaraa.com

124

finishing a certain amount of packet processing, say every 1000 packets.

Fuzzy
Controller

Robbins-
Monro

Server
+

ref=1 e(t+1)

x(t+1)

f(t+1)

z(t+1)

α

Figure 7.1: Power management controller design.

7.1.2 Fuzzy Controller

We apply the updated delay estimate x(t+ 1) obtained from the Robbins-Monro

algorithm as the new set point to regulate the processor frequency, f , via a single-input

single-output (SISO) fuzzy controller, as shown in Fig. 7.1. For a value of α = 0.95 to

indicate a target performance of having 95% of requests meet QoS deadline, it follows

that, on average, y(t) will also be equal to 0.95 (for 95% of responses, y = 1, and for

5% of responses, y = 0).

Figure 7.2 illustrates the structure of the Self-Tuning Fuzzy Controller (STFC).

It consists of three components, namely the fuzzy logic controller, the scaling-factor

controller and the output amplifier. The frequency in control interval k + 1, denoted

by f(k + 1), is adjusted according to its error e(k) (i.e., the normalized difference

between the reference value and the achieved one) and change of error ∆e(k) in

previous control interval k using a set of control rules embedded in the fuzzy logic

controller.

Based on these, the controller calculates frequency adjustment ∆f(k) for next

www.manaraa.com

125

Inference
machanism

Rule-base

Fuzzy logic controller

D
ef

uz
zi

fic
at

io
n

Fu
zz

ifi
ca

tio
n

Scaling-factor controller

Output
amplifier

Ke

γ

f(k)

γK∆f

∆f(k)

K∆ex(k)

r(k) e(k)

∆e(k)

+

Robbins-Monro

Server

α

z(k)

Figure 7.2: Fuzzy controller design.

control interval. The calculated resource adjustment is then fed into the next layer

gain scheduler.

The fuzzy logic controller contains four building blocks. The actual fuzzy logic is

implemented as a set of If-Then rules about quantified control knowledge about how to

adjust the frequency according to e(k) and ∆e(k). The fuzzification interface converts

controller inputs into certainties in numeric values of the input membership functions.

The inference mechanism activates the rule-base and applies fuzzy rules according

to the fuzzified inputs and generates the fuzzy conclusions for the defuzzification

interface. The defuzzification interface converts fuzzy conclusions into the change of

frequency in numeric value.

The STFC is built on the static fuzzy logic controller by adding the self-tuning

scaling factors and the output amplifier. There are three scaling factors: input factors

Ke and K∆e, output factor γ and output amplifier K∆f . The change of input scaling

factors changes the connection of input values to suitable rules, The change of output

scaling factor and the amplifier together adjust the amplitude of the control input.

The actual inputs of the fuzzy logic controller are |Ke|e(k) and |K∆e|∆e(k). Thus,

www.manaraa.com

126

the adjustment of frequency in control interval k + 1 is

f(k + 1) = f(k) + γ|K∆f |∆f(k) =

∫
γK∆f∆f(k)dk.

The design objective is to translate human expert’s knowledge into a set of control

rules to control the frequency without a system model. In the fuzzy logic controller,

the control rules are defined using linguistic variables. For brevity, linguistic vari-

ables “e(k)”, “∆e(k)”, and “∆f(k)” are used to describe e(k), ∆e(k), and ∆f(k),

respectively. The linguistic variables assume linguistic values NL(negative large),

NM (negative medium), NS (negative small), ZE (zero), PS (positive small), PM

(positive medium), and PL (positive large).

Figure 7.3(a) gives an simple illustration of typical control effect. In this figure,

we identify five zones with different characteristics. Zone 1 and 3 are characterized

with opposite signs of e(k) and ∆e(k), where the error is self-correcting and the

achieved value is moving toward the reference value. Thus, ∆f(k) needs to be set

either to speed up or to slow down current trend. Zone 2 and 4 are characterized

with the same signs of e(k) and ∆e(k), where the error is not self-correcting and the

achieved value is moving away from the reference value. Therefore, ∆f(k) should be

set to reverse current trend. Zone 5 is characterized with rather small magnitudes of

e(k) and ∆e(k). Therefore, the system is at a steady state and ∆f(k) should be set

to maintain current state and correct small deviations from the reference value.The

resulted control rules are summarized in Figure 7.3(b). For example, when “e(k)”

and “∆e(k)” are NL and PS, “∆f(k)” is set to PM .

We adapted the same design for the membership function and inference mechanism

from [115].

The fuzzy logic controller only defines the basic control rules according to the

www.manaraa.com

127

R
es
p
on

se
ti
m
e

Sampling period

reference response time

5

2 3

41

Reference value

O
bs

er
ve

d
va

lu
e

Sampling period

(a) The control effect

PS

PMPL

ZE

NS

NM

NL

“∆e(k)”“∆u(k)”

“e(k)”
PL

PL

PL

PL

PL

PL

PL

PL
PL

PL

PM

PM

PM

PM

PM
PM

PL

NL

NM

NS

ZEPS

PS

PS

PS

PS

PS
PS

ZE

ZE

ZE

ZE

ZE

ZE
ZE

NS

NS

NS

NS

NS

NS

NM

NM

NM

NM

NM

NL

NL

NL NL

NL

NL

NL

NL

NL

NL
1

3

4

2

5

(b) The rule table

Figure 7.3: Design of the fuzzy control rules.

inputs of e(k) and ∆e(k). It outputs the sign and magnitude of the frequency adjust-

ment ∆f(k). However, there could be a few fluctuations due to workload change or

inaccuracy from the controller.

A self-tuning controller is designed to address this problem using adaptive output

magnitude and flexible control rules. The self-tuning features consider dynamically

changing the input, output scaling factors and the output amplifier. The output

scaling factor γ and the output amplifier K∆f(k) together determine the magnitude

of the allocation adjustment. The amplifier implements heuristic control knowledge

as follows:

K∆f(k) = |f
2
· e(k)|,

where f is the current frequency. The amplifier follows a heuristic rule that the

maximum resource adjustment should not exceed half of current capacity for stability

and should be proportional to the control error for adaptability. The direction of the

adjustment is still determined by the fuzzy logic.

In real systems, there are only a few discrete levels of CPU frequencies. To mimic

the continuous CPU frequency scaling, we adapt the method of “CPU dithering”.

For example, suppose we have 4 discrete CPU frequency levels, say 3, 6, 8, and 10

if we divide them by 100MHz. If we want to mimic the frequency of 7, we can let

the CPU run half time at speed 6 and half time at speed 8. In our experiment, we

www.manaraa.com

128

will round the frequency level to integer. And we set the minimal interval for scaling

frequency is 1 second.

We notice this controller can provide user-defined QoS guarantee while minimizing

power consumption. However, there is no guarantee on the power consumption. If

we want to guarantee the power consumption, similar controller can be design with

the power consumption as the reference and outcome.

7.2 Implementation

We implemented this statistical QoS controller on two test beds.

The first test bed on a BBU. More specifically, it is a BeagleBoard-xM embed-

ded system with USRP. BeagleBoard-xM has a TI DM3730 MPSoC which includes

an ARM Cortex-A8 General Purpose Processor (CPP) and C64x+ DSP. It has

512MB DDR RAM. The ARM processor on BeagleBoard-xM has four CPU frequen-

cies: 300MHz, 600MHz, 800MHz and 1GMHz. Universal Software Radio Peripheral

(USRP) is a universal platform for software radios. GNURadio [5] provides the signal

processing runtime and processing blocks to implement software radios external RF

hardware (USRP) and commodity processors (ARM). We connect a USRP with a

multimedia server. At receiver end, there is a BeagleBoard-xM with USRP. With

GNURadio installed, the receiver can receive stream from sender via wireless com-

munication. The application we used in evaluation is streaming application. We

consider the signal processing at receiver end. This work includes demodulation,

deinterleaving, and decoding. The test bed is set up as Figure 7.4.

The second test bed is Dell PowerEdge1950 servers with 4 CPU frequencies. The

available benchmarks and applications on our BBUs are limited, we evaluate the

above power management policy on servers due to the similarity between the target

www.manaraa.com

129

Beagle

board

GNU Radio

ARM/DSP

APP

USRP USRP PC

GNU Radio

Linux

VoIP/Web/

Video

Demo Application

USBUSB
PC

OS

VoIP/Web/

Video

Traffic

generator
BBU

QoS Power

Power Management

Figure 7.4: System Overview.

0 100 200 300 400 500
6

8

10

12

14

16

18

20

Processing Iterations (every 1000pkts)

D
el

ay
 (

s)

Measured
Target

(a) Delay

0 100 200 300 400 500
2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

Processing Iterations (every 1000pkts)

A
vg

 P
ow

er
 (

W
)

Measured

(b) Power consumption

Figure 7.5: Statistic QoS controller on streaming on BBU.

applications in BBUs and the workloads we selected on servers. One application is

TPC-W, which is similar to data applications in BBUs. TPC-W is an E-commerce

benchmark modeling after an online book store. It is a CPU-bound workload.

7.3 Experimental Results

First, we evaluate this statistic QoS controller on BBU running streaming bench-

mark. We set the rate to be 200kbps and the packet size to be 100 bytes. We assume

the tolerable delay for BBU to process 1000 packets is 12 seconds. And the target

QoS quantile is 90%.

www.manaraa.com

130

Table 7.1: Comparison of three settings (streaming on BBU).

CPU setting QoS satisfaction Avg power consumption (W)
max freq 100% 3.436
min freq 0% 2.869

with controller 90.6% 3.158

Table 7.2: Comparison of three target delay with same QoS quantile (streaming on
BBU).

Target delay (s) QoS satisfaction Avg power consumption (W)
10 91.4% 3.358
12 90.6% 3.158
15 89.8% 3.038

Figure 7.5 shows the results of applying this controller on streaming workload for

500 iterations. We can see the delay will be bounded under the target, 12 seconds, for

most intervals. There are a few spikes of delay plots as CPU frequency scaled down.

It also leads to a few dropoffs on power consumption.

We further summarized the above results in a quantitive manner. As comparison,

we ran the same streaming application at maximal and minimal CPU frequency, re-

spectively. Results are shown in Table 7.1. Using this statistic QoS, we can reduce

the power consumption by around 10% while still meeting target statistic QoS. Con-

sidering the relatively large static power consumption of a server, which is usually

2.6W, we can achieve round 30% dynamic power saving with 10% QoS loss.

We also study the impact on power consumption when the target delay is different

while QoS quantile is fixed. With looser delay constraint, more power can be saved.

Results are shown in Table 7.2. Similar observation can be found when QoS quantile

is changed. We omit the results here.

Then, we investigate the performance of this statistic QoS controller on TPC-W

www.manaraa.com

131

Table 7.3: Comparison of three running scenarios (TPC-W on server).

CPU setting QoS satisfaction Avg power consumption (W)
max freq 100% 267.5
min freq 69.625% 237.1

with controller 90.375% 253.9

benchmark. We assume that the control target can always be achieved by a proper

control solution. However, this target should be selected carefully as well according

to the workload characteristics. We ran TPC-W with shopping workload mixes. The

concurrency level was 300. We defined tolerable response time is 3000ms and target

QoS quantile is 90%. The performance metric is reported every 3 seconds and control

period is 3 seconds.

We ran this application over 800 intervals when the controller was applied. We

summarized the above in a quantitive manner. As comparison, we ran TPC-W with

same workload mixes and concurrency level at maximal and minimal CPU frequency,

respectively. Results are shown in Table 7.3. Using this statistic QoS, we can reduce

the power consumption by more than 5% while still meeting target statistic QoS.

Considering the relatively large static power consumption of a server, which is usually

more than 196W, we can achieve round 20% dynamic power saving with 10% QoS

loss.

www.manaraa.com

132

Chapter 8

Conclusions and Future Work

This dissertation aims to build power-efficient networked computing systems. In

this chapter, we summarize the approaches presented in this dissertation and discuss

the directions of future work.

8.1 Conclusions

Power is emerging to be key challenges in networked computing systems, from

real-time embedded systems to enterprise server environments. A design challenge

for embedded systems is power efficiency because most embedded systems are powered

by battery with limited capacity. The concern of power expenditure rises as well in

enterprise server environments. On one hand, the increasing power consumption leads

to tremendous increase spending on cooling and delivery equipments. On the other

hand, the electricity bill keeps increasing due to popularity of high-density enterprise

servers. Furthermore, power consumption in data centers can also lead to tremendous

environment pollutions.

The energy expenditure on networked real-time systems consists of two major

www.manaraa.com

133

parts: the expenditure on the circuit board and the expenditure for wireless commu-

nication. In our work, we emphasize on seeking energy efficiency on wireless commu-

nication rather than on circuit board for networked real-time systems. We consider

transmission energy optimization over an additive white Gaussian noise (AWGN)

channel with delay constraint for each packet. We assume such a transmitter has re-

newable energy resources so that it is often impossible to deliver all the data generated

during each period. Instead, the data with higher level of importance, represented

by reward, should have high priority to deliver. We formulate this problem as a

reward maximization problem. We propose the optimal solution to this problem in

pseudo-polynomial time. And we provide a sub-optimal approach with polynomial

time complexity.

Regulating on circuit board can affect system-wide power consumption signifi-

cantly. We provide a general-purposed, practical and comprehensive power manage-

ment middleware for networked computing systems to manage circuit board power

consumption. It has the functionalities of power and performance monitoring, power

management (PM) policy selection and control, as well as energy efficiency analysis.

It is a general framework of power management middleware for different platforms,

from servers to real-time embedded systems. A prototype is implemented and de-

ployed on BBUs. To the best of our knowledge, this middleware is the first software

to provide comprehensive and practical solution to power management in BBUs.

Three representative PM policies are included. We present these three strategies in

different contexts to exhibit the ability of adaptation.

In enterprise server environments, limiting system power consumption (power cap-

ping) is an effective solution to avoid system failure due to power capacity overload

or overheating. The system-wide power consumption includes that from different

subsystems, such as processors, memory, etc. Although there are a few power man-

www.manaraa.com

134

agement mechanisms on the subsystems other than processors, we use DVFS as the

main mechanism to adjust system-wide power consumption as other mechanisms may

not always be feasible and processors consumes relatively large portion of power. To

achieve a responsive control on system-wide power consumption, we present a model-

predictive feedback controller to regulate processor frequency so that power budget

can be satisfied without significant loss on performance.

The proliferation of virtualization technology brings a number of benefits to data

centers, such as performance isolation and server consolidation. However, challenges

arise as all co-residing virtual machines (VMs) share a hardware platform so that

power management policies imposed on hardware may affect the performance of all

hosted VMs. It becomes even more complicated with the consideration of time-

varying workloads. In addition to power budget, service-level agreement (SLA) in

performance one primary concern. We presented vPnP, a feedback control based

coordination system, to provide guarantees on SLA with respect to both power and

performance in virtualized environments. Rather than DVFS, we use VCPU capping

in this scenario as power management mechanism to alleviate the interference among

VMs.

Finally, considering the Base Band Units (BBUs) in practice, to improve energy

efficiency in BBUs, we proposed a power management strategy for controlling delay

and minimizing power consumption using DVFS. A Robbins-Monro (RM) stochastic

approximation method is to estimate delay quantile. A fuzzy controller is coupled

with the RM algorithm to obtain the CPU frequency for the receiver side BBU that

will maintain performance within the specified QoS.

www.manaraa.com

135

8.2 Future Work

There are several issues and challenges along the line of this dissertation.

First, we plan to extend our current work for power management of wireless

transmitters. In our previous work, we studied packet transmission in an AWGN

channel. In practice, the state of the wireless channel may vary from time to time.

We will consider more realistic wireless fading channels and multi-user environments

in our future work.

Second, the power model presented in Chapter 4 and Chapter 5 is learned offline.

As this learning process requires a comprehensive data sets, it may take a long to

obtain an accurate power model. An online solution can be provided by regression

using insufficient samples while the model can keep refining as most samples are col-

lected. In addition, we did not consider the power model in virtualized environments.

How to estimate and validate the power consumption for each hosted VM remains a

challenge.

Third, the coordination of power and performance in virtualized environments

need to be studied at cluster-level. Currently, we did not take into account the

knowledge of the entire cluster. The cluster-level power and performance coordination

solution involves the application deployment as well as power allocation across the

physical servers, and resource allocation of each co-residing VMs on a host. This study

can be further explored when we enable power-on/off in cluster. When investigating

the usage of the entire cluster, existing study shows that the average utilization

could be below 20% [78]. The servers nowadays are not energy-proportional [106]

thus a significant amount of power is still consumed at low levels of utilization. By

consolidation, more servers can be idle then more power can be saved if these idle

servers are shut down. Consolidation can achieve more aggressive power saving with

www.manaraa.com

136

the risk of SLA violations. From the users’ perspective, the SLA should be guaranteed.

This aggressive mechanism make the problem more complicated.

Fourth, PMM needs to be enriched with more PM policies and may take more

components into account (for example, DSP in BBUs). So far, we have integrated

three representative PM policies into PM library in PMM. More policies could be

added to meet different requirements.

www.manaraa.com

137

REFERENCES

[1] Beagle board. http://www.digikey.com/beagleboard.

[2] “credit scheduler”. http://wiki.xensource.com/xenwiki/CreditScheduler.

[3] Electronic educational devices inc., “watts up pro power meter”. http://www.

wattsupmeters.com.

[4] Extech instruments corporation, ‘extech 380801 power analyzer”. http://www.

extech.com/.

[5] Gnuradio. http://gnuradio.org/.

[6] mibench. http://www.eecs.umich.edu/mibench/.

[7] Openbts. http://openbts.sourceforge.net/.

[8] Specweb2005. http://www.spec.org/web2005/.

[9] sysstat. http://pagesperso-orange.fr/sebastien.godard/.

[10] AMD. White paper publication 26094: Bios and kernel developer’s guide for

ame athlon 64 and amd opteron processorss. 2006.

[11] H. Aydin, R. G. Melhem, D. Mossé, and P. Mej́ıa-Alvarez. Optimal reward-

based scheduling for periodic real-time tasks. IEEE Trans. Computers, 2001.

[12] S. Banerjee and A. Misra. Adapting transmission power for optimal energy

reliable multi-hop wireless communication. In Proc. of Wireless Optimiazation

Workshop (WiOpt), 2003.

http://www.digikey.com/beagleboard
http://wiki.xensource.com/xenwiki/CreditScheduler
http://www.wattsupmeters.com
http://www.wattsupmeters.com
http://www.extech.com/
http://www.extech.com/
http://gnuradio.org/
http://www.eecs.umich.edu/mibench/
http://openbts.sourceforge.net/
http://www.spec.org/web2005/
http://pagesperso-orange.fr/sebastien.godard/

www.manaraa.com

138

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP ’03.

ACM, 2003.

[14] L. A. Barroso and U. Hölzle. The case for energy-proportional computing.

Computer, 40(12):33–37, 2007.

[15] F. Bellosa. The benefits of event-driven energy accounting in power-sensitive

systems. In In Proceedings of the 9th ACM SIGOPS European Workshop, 2000.

[16] R. A. Berry and R. G. Gallager. Communication over fading channels with

delay constraints. IEEE Trans. on Information Theory, 2002.

[17] L. Bertini, J. C. B. Leite, and D. Mosse. Generalized tardiness quantile metric:

Distributed dvs for soft real-time web clusters. In Proceedings of the 2009 21st

Euromicro Conference on Real-Time Systems, pages 227–236, Washington, DC,

USA, 2009. IEEE Computer Society.

[18] W. L. Bircher and L. K. John. Complete system power estimation: A trickle-

down approach based on performance events. In ISPASS ’07, 2007.

[19] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell, and

R. Rajamony. The case for power management in web servers. 2002.

[20] E. Brockmeyer, M. Miranda, H. Corporaal, F. Catthoor, M. Mir, H. Corporaal,

and F. Catthoor. Layer assignment techniques for low energy in multi-layered

memory organisations. In DATE’03, 2003.

[21] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. In ISCA’00, 2000.

www.manaraa.com

139

[22] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving disk energy in network

servers. In ICS’03, 2003.

[23] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing energy

and server resources in hosting centers. In SOSP’01, 2001.

[24] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao. Energy-

aware server provisioning and load dispatching for connection-intensive internet

services. In NSDI’08. USENIX Association, 2008.

[25] J.-J. Chen and T.-W. Kuo. Voltage scaling scheduling for periodic real-time

tasks in reward maximization. In RTSS’05, 2005.

[26] W. Chen and U. Mitra. Energy efficient scheduling with individual packet delay

constraints. In Infocom’06, 2006.

[27] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam.

Managing server energy and operational costs in hosting centers. SIGMETRICS

Perform. Eval. Rev., 2005.

[28] D. Colarelli and D. Grunwald. Massive arrays of idle disks for storage archives.

In SC ’02. IEEE Computer Society Press, 2002.

[29] B. Collins and R. L. Cruz. Transmission policies for time varying channels with

average delay constraints. In Proc. of Allerton Conference on Communnication,

Control, and Computing, 1999.

[30] B. Colwell. We may need a new box. Computer, 2004.

[31] G. Contreras and M. Martonosi. Power prediction for intel xscale R©processors

using performance monitoring unit events. In ISLPED ’05. ACM, 2005.

www.manaraa.com

140

[32] T. M. Cover and J. A. Thomas. Elements of information theory. New York:

Wiley, 1991.

[33] J. K. Dey, J. F. Kurose, and D. F. Towsley. On-line scheduling policies for a

class of iris (increasing reward with increasing service) real-time tasks. IEEE

Trans. Computers, 1996.

[34] K. Dudzinski and S. Walukiewicz. Exact methods for the knapsack problem

and its generalizations. European Journal of Operational Research, 1987.

[35] M. E. Femal and V. W. Freeh. Boosting data center performance through

non-uniform power allocation. In ICAC ’05. IEEE Computer Society, 2005.

[36] D. R. S. Economous, C. Kozyrakis, and P. Ranganathan. Full-system power

analysis and modeling for server environments. In MoBS ’06, 2006.

[37] M. Elnozahy, M. Kistler, and R. Rajamony. Energy conservation policies for

web servers. In In Proceedings of the 4th USENIX Symposium on Internet

Technologies and Systems, 2003.

[38] EPA. Epa report to congress on server and data center energy efficiency. Tech-

nical report, U.S. Environmental Protection Agency, 2007.

[39] X. Fan, C. Ellis, and A. Lebeck. Memory controller policies for dram power

management. In ISLPED ’01. ACM, 2001.

[40] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a warehouse-

sized computer. In ISCA ’07. ACM, 2007.

[41] W. Felter, K. Rajamani, T. Keller, and C. Rusu. A performance-conserving

approach for reducing peak power consumption in server systems. In ICS ’05.

ACM, 2005.

www.manaraa.com

141

[42] D. Ferrari and D. C. Verma. A scheme for real-time channel establishment in

wide-area networks. IEEE Journal on Selected Areas in Communications, 1990.

[43] A. Fu, E. Modiano, and J. N. Tsitsiklis. Optimal energy allocation for delay-

constrained data transmission over a time-varying channel. In Infocom’03, 2003.

[44] A. E. Gamal, C. Nair, B. Prabhakar, E. Uysal-Biyikoglu, and S. Zahedi. Energy-

efficient scheduling of packet transmissions over wireless networks. In Info-

com’02, 2002.

[45] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal power alloca-

tion in server farms. In SIGMETRICS ’09. ACM, 2009.

[46] S. R. Garner. Weka: The waikato environment for knowledge analysis. In

In Proc. of the New Zealand Computer Science Research Students Conference,

1995.

[47] L. Georgiadis, R. Guerin, and A. Parekh. Optimal multiplexing on a single

link: delay and buffer requirements. Information Theory, IEEE Transactions

on, 1997.

[48] J. Gong and C.-Z. Xu. A gray-box feedback control approach for system-level

peak power management. In ICPP’10, volume 0. IEEE Computer Society, 2010.

[49] J. Gong and C.-Z. Xu. vpnp: Automated coordination of power and perfor-

mance in virtualized datacenters. In IWQoS ’10, 2010.

[50] J. Gong, X. Zhong, and C.-Z. Xu. Energy and timing constrained system reward

maximization on wireless networks. In ICDCS’08, 2008.

[51] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M. Kan-

demir, T. Li, and L. K. John. Using complete machine simulation for software

www.manaraa.com

142

power estimation: The softwatt approach. In HPCA ’02. IEEE Computer So-

ciety, 2002.

[52] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bianchini. Energy con-

servation in heterogeneous server clusters. In PPoPP ’05. ACM, 2005.

[53] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control of

Computing Systems. John Wiley & Sons, 2004.

[54] S. Herbert and D. Marculescu. Analysis of dynamic voltage/frequency scaling

in chip-multiprocessors. In ISLPED ’07. ACM, 2007.

[55] Hewlett-Packard, Intel, Microsoft, Pheonix, and Toshiba. Advanced configura-

tion and power interface specification revision 4.0, 2009.

[56] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu. Dynamic voltage scaling

in multitier web servers with end-to-end delay control. IEEE Trans. Comput.,

56(4), 2007.

[57] T. Horvath and K. Skadron. Multi-mode energy management for multi-tier

server clusters. In PACT ’08: Proceedings of the 17th international conference

on Parallel architectures and compilation techniques. ACM, 2008.

[58] M. T. Inc. Calculating memory system power for ddr3, 2007.

[59] Intel. White paper publication 301170: Enhanced intel speedstep technology

for the intel pentium m processor. 2004.

[60] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Man-

ual - Volume 3A: System Programming Guide Part 1, 2009.

www.manaraa.com

143

[61] R. Jejurikar and R. Gupta. Dynamic voltage scaling for systemwide energy

minimization in real-time embedded systems. In ISLPED ’04, New York, NY,

USA, 2004. ACM.

[62] Y. Joo, Y. Choi, H. Shim, H. G. Lee, K. Kim, and N. Chang. Energy exploration

and reduction of sdram memory systems. In DAC ’02, New York, NY, USA,

2002. ACM.

[63] E. Kalyvianaki, T. Charalambous, and S. Hand. Self-adaptive and self-

configured cpu resource provisioning for virtualized servers using kalman filters.

In ICAC ’09. ACM, 2009.

[64] A. Kamra. Yaksha: A self-tuning controller for managing the performance of

3-tiered web sites. In IWQoS, 2004.

[65] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Verlag,

2004.

[66] J. O. Kephart, H. Chan, R. Das, D. W. Levine, G. Tesauro, F. Rawson, and

C. Lefurgy. Coordinating multiple autonomic managers to achieve specified

power-performance tradeoffs. In ICAC ’07. IEEE Computer Society, 2007.

[67] M. A. Khojastepour and A. Sabharwal. Delay-constrained scheduling: Power

efficiency, filter design, and bounds. In Infocom’04, 2004.

[68] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang. Power and

performance management of virtualized computing environments via lookahead

control. In ICAC ’08. IEEE Computer Society, 2008.

[69] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W. Keller.

Energy management for commercial servers. Computer, 36(12), 2003.

www.manaraa.com

144

[70] C. Lefurgy, X. Wang, and M. Ware. Server-level power control. In ICAC ’07.

IEEE Computer Society, 2007.

[71] J. C. Leite, D. M. Kusic, D. Mossé, and L. Bertini. Stochastic approximation

control of power and tardiness in a three-tier web-hosting cluster. In Proceeding

of the 7th international conference on Autonomic computing, ICAC ’10, New

York, NY, USA, 2010. ACM.

[72] D. Li and P. H. Chou. Maximizing efficiency of solar-powered systems by load

matching. In ISLPED ’04, New York, NY, USA, 2004. ACM.

[73] D. Li and P. H. Chou. Application/architecture power co-optimization for em-

bedded systems powered by renewable sources. In DAC’05, 2005.

[74] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in

a hard-real-time environment. J. ACM, 1973.

[75] J. W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle River,

NJ, USA, 2000.

[76] Y.-H. Lu, L. Benini, and G. De Micheli. Operating-system directed power

reduction. In ISLPED ’00. ACM, 2000.

[77] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadron. Control-

theoretic dynamic frequency and voltage scaling for multimedia workloads. In

CASES ’02. ACM Press, 2002.

[78] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: eliminating server idle

power. In ASPLOS ’09. ACM, 2009.

[79] P. Mejia-Alvarez, E. Levner, and D. Mossé. Adaptive scheduling server for

power-aware real-time tasks. ACM Trans. Embed. Comput. Syst., 2004.

www.manaraa.com

145

[80] D. A. Menasce. Tpc-w - a benchmark for e-commerce, 2002.

[81] R. J. Minerick, V. Freech, and P. M. Kogge. Dynamic power management

using feedback. In Workshop on Compilers and Operating Systems for Low

Power (COLP), 2002.

[82] R. Nathuji, P. England, P. Sharma, and A. Singh. Feedback driven qos-aware

power budgeting for virtualized servers. In FeBID ’09, 2009.

[83] R. Nathuji and K. Schwan. Virtualpower: coordinated power management in

virtualized enterprise systems. In SOSP ’07. ACM, 2007.

[84] M. J. Neely. Optimal energy and delay tradeoffs for multi-user wireless down-

links. In Infocom’06, 2006.

[85] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and

A. Merchant. Automated control of multiple virtualized resources. In EuroSys

’09. ACM, 2009.

[86] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini. Dma-aware memory energy

management. In HPCA ’06, 2006.

[87] M. Pedram. Power Aware Design Methodologies. Kluwer Academic Publishers,

Norwell, MA, USA, 2002.

[88] E. Pinheiro and R. Bianchini. Energy conservation techniques for disk array-

based servers. In ICS ’04. ACM, 2004.

[89] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load balancing and un-

balancing for power and performance in cluster-based systems. In In Workshop

on Compilers and Operating Systems for Low Power (COLP), 2001.

www.manaraa.com

146

[90] E. Pinheiro, R. Bianchini, and C. Dubnicki. Exploiting redundancy to conserve

energy in storage systems. SIGMETRICS Perform. Eval. Rev., 34(1), 2006.

[91] D. Rajan, A. Sabharwal, and B. Aazhang. Delay-bounded packet scheduling

of bursty traffic over wireless channels. IEEE Trans. on Information Theory,

2004.

[92] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek. A resource allocation

model for qos management. In RTSS’97, 1997.

[93] D. Rakhmatov and S. Vrudhula. Energy management for battery-powered em-

bedded systems. ACM Trans. Embed. Comput. Syst., 2003.

[94] P. Ranganathan, P. Leech, D. Irwin, J. Chase, and H. Packard. Ensemble-level

power management for dense blade servers. In ISCA ’06, 2006.

[95] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin. Vconf: a reinforcement learning

approach to virtual machines auto-configuration. In ICAC ’09. ACM, 2009.

[96] H. Robbins and S. Monro. A stochastic approximation method. Annals of

Mathematical Statistics, 22:400–407, 1951.

[97] C. A. Rusu, R. Melhem, and D. Mossé. Maximizing the system value while

satisfying time and energy constraints. IBM J. Res. Dev., 2003.

[98] C. Schurgers, V. Raghunathan, and M. B. Srivastava. Power management for

energy-aware communication systems. ACM Trans. Embedded Comput. Syst.,

2003.

[99] V. Sharma, A. Thomas, T. Abdelzaher, and K. Skadron. Power-aware qos

management in web servers. In RTSS ’03, 2003.

www.manaraa.com

147

[100] V. Sivaraman, F. M. Chiussi, and M. Gerla. End-to-end statistical delay service

under gps and edf scheduling: A comparison study. In Infocom’01, 2001.

[101] R. S. Sutton, A. G. Barto, and R. J. Williams. Reinforcement learning is direct

adaptive optimal control. In the American Control Conference, 1991.

[102] Y. Tan, W. Liu, and Q. Qiu. Adaptive power management using reinforcement

learning. In ICCAD ’09. ACM, 2009.

[103] G. Tesauro, R. Das, H. Chan, J. O. Kephart, D. Levine, F. L. R. III, and C. Le-

furgy. Managing power consumption and performance of computing systems

using reinforcement learning. In NIPS. MIT Press, 2007.

[104] E. Uysal-Biyikoglu, B. Prabhakar, and A. E. Gamal. Energy-eficient packet

transmission over a wireless link. IEEE/ACM Trans. on Networking, 2002.

[105] V. Venkatachalam and M. Franz. Power reduction techniques for microprocessor

systems. ACM Comput. Surv., 37(3), 2005.

[106] A. Verma, P. Ahuja, and A. Neogi. pmapper: power and migration cost aware

application placement in virtualized systems. In Middleware ’08. Springer-

Verlag New York, Inc., 2008.

[107] A. Verma, P. Ahuja, and A. Neogi. Power-aware dynamic placement of hpc

applications. In ICS ’08. ACM, 2008.

[108] A. Verma, G. Dasgupta, T. Kumar, N. Pradipta, and D. R. Kothari. Server

workload analysis for power minimization using consolidation. In USENIX

ATC’09. USENIX Association, 2009.

[109] H. Wang and N. B. Mandayam. Delay and energy constrained dynamic power

control. In GLOBECOM’01, 2001.

www.manaraa.com

148

[110] H. Wang and N. B. Mandayam. Opportunistic file transfer over a fading channel

under energy and delay constraints. IEEE Transactions on Communications,

2005.

[111] X. Wang and M. Chen. Cluster-level feedback power control for performance

optimization. In HPCA’08. IEEE Computer Society, 2008.

[112] X. Wang and Y. Wang. Co-con: Coordinated control of power and application

performance for virtualized server clusters. In IWQoS ’09, 2009.

[113] Y. Wang, X. Wang, M. Chen, and X. Zhu. Power-efficient response time guar-

antees for virtualized enterprise servers. In RTSS ’08. IEEE Computer Society,

2008.

[114] Y. Wang and I. H. Witten. Pace regression. Hamilton, New Zealand: University

of Waikato, Department of Computer Science, 1999.

[115] J. Wei and C.-Z. Xu. eqos: Provisioning of client-perceived end-to-end qos

guarantees in web servers. IEEE Trans. Computers, 55(12), 2006.

[116] Q. Wu, P. Juang, M. Martonosi, L.-S. Peh, and D. W. Clark. Formal control

techniques for power-performance management. IEEE Micro, 2005.

[117] C.-Z. Xu, B. Liu, and J. Wei. Model predictive feedback control for qos assur-

ance in webservers. Computer, 2008.

[118] M. Xu and C.-Z. Xu. Decay function model for resource configuration and

adaptive allocation on internet servers. In IWQoS ’04, 2004.

[119] M. Zafer and E. Modiano. A calculus approach to minimum energy transmission

policies with quality of service guarantees. In Infocom’05, 2005.

www.manaraa.com

149

[120] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Ecosystem: Managing

energy as a first class operating system resource. In ASPLOS ’02, 2002.

[121] F. Zhang and S. T. Chanson. Improving communication energy efficiency in

wireless networks powered by renewable energy sources. IEEE Trans. on Ve-

hicular Technology, 2005.

[122] Y. Zhang, A. Bestavros, M. Guirguis, I. Matta, and R. West. Friendly virtual

machines - leveraging a feedback-control model for application adaptation. In

VEE’04. ACM, 2004.

[123] X. Zhong and C.-Z. Xu. System-wide energy minimization for real-time tasks:

lower bound and approximation. In ICCAD ’06, New York, NY, USA, 2006.

ACM.

[124] X. Zhong and C.-Z. Xu. Energy-efficient wireless packet scheduling with quality

of service control. IEEE Trans.on Mobile Computing, 2007.

[125] X. Zhong and C.-Z. Xu. Online energy efficient packet scheduling with delay

constraints in wireless networks. In Infocom’08, 2008.

[126] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and P. Cao. Reducing

energy consumption of disk storage using power-aware cache management. In

HPCA ’04. IEEE Computer Society, 2004.

[127] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, P. Padala, and K. Shin.

What does control theory bring to systems research? SIGOPS Oper. Syst. Rev.,

43(1):62–69, 2009.

[128] Y. Zhu and F. Mueller. Feedback edf scheduling exploiting dynamic voltage

scaling. In RTAS ’04, 2004.

www.manaraa.com

150

ABSTRACT

QOS-AWARE FINE-GRAINED POWER MANAGEMENT IN
NETWORKED COMPUTING SYSTEMS

by

JIAYU GONG

DECEMBER 2011

Advisor:

Major:

Degree:

Dr. Cheng-Zhong Xu

Computer Engineering

Doctor of Philosophy

Power is a major design concern of today’s networked computing systems, from

low-power battery-powered mobile and embedded systems to high-power enterprise

servers. Embedded systems are required to be power efficiency because most embed-

ded systems are powered by battery with limited capacity. Similar concern of power

expenditure rises as well in enterprise server environments due to cooling requirement,

power delivery limit, electricity costs as well as environment pollutions.

The power consumption in networked computing systems includes that on circuit

board and that for communication. In the context of networked real-time systems,

the power dissipation on wireless communication is more significant than that on

circuit board. We focus on packet scheduling for wireless real-time systems with

renewable energy resources. In such a scenario, it is required to transmit data with

higher level of importance periodically. We formulate this packet scheduling problem

as an NP-hard reward maximization problem with time and energy constraints. An

optimal solution with pseudo-polynomial time complexity is presented. In addition,

we propose a sub-optimal solution with polynomial time complexity.

Circuit board, especially processor, power consumption is still the major source

www.manaraa.com

151

of system power consumption. We provide a general-purposed, practical and compre-

hensive power management middleware for networked computing systems to manage

circuit board power consumption thus to affect system-level power consumption. It

has the functionalities of power and performance monitoring, power management

(PM) policy selection and PM control, as well as energy efficiency analysis. This

middleware includes an extensible PM policy library. We implemented a prototype of

this middleware on Base Band Units (BBUs) with three PM policies enclosed. These

policies have been validated on different platforms, such as enterprise servers, virtual

environments and BBUs.

In enterprise environments, the power dissipation on circuit board dominates.

Regulation on computing resources on board has a significant impact on power con-

sumption. Dynamic Voltage and Frequency Scaling (DVFS) is an effective technique

to conserve energy consumption. We investigate system-level power management in

order to avoid system failures due to power capacity overload or overheating. This

management needs to control the power consumption in an accurate and responsive

manner, which cannot be achieve by the existing black-box feedback control. Thus

we present a model-predictive feedback controller to regulate processor frequency so

that power budget can be satisfied without significant loss on performance.

In addition to providing power guarantee alone, performance with respect to

service-level agreements (SLAs) is required to be guaranteed as well. The prolifera-

tion of virtualization technology imposes new challenges on power management due to

resource sharing. It is hard to achieve optimization in both power and performance

on shared infrastructures due to system dynamics. We propose vPnP, a feedback

control based coordination approach providing guarantee on application-level perfor-

mance and underlying physical host power consumption in virtualized environments.

This system can adapt gracefully to workload change. The preliminary results show

www.manaraa.com

152

its flexibility to achieve different levels of tradeoffs between power and performance

as well as its robustness over a variety of workloads.

It is desirable for improve energy efficiency of systems, such as BBUs, hosting soft-

real time applications. We proposed a power management strategy for controlling

delay and minimizing power consumption using DVFS. We use the Robbins-Monro

(RM) stochastic approximation method to estimate delay quantile. We couple a

fuzzy controller with the RM algorithm to scale CPU frequency that will maintain

performance within the specified QoS.

www.manaraa.com

153

AUTOBIOGRAPHICAL STATEMENT

JIAYU GONG

Jiayu Gong is a Ph.D. candidate of Department of Electrical and Computer Engi-

neering at Wayne State University. He received the B.S. degree and the M.S. degree

both in Computer Science from Nanjing University, Nanjing, China, in 2002 and 2005,

respectively.

His research interests include power management in server environments and em-

bedded systems, mobile computing, and resource management in cloud computing.

He has published one journal paper in IEEE Transactions of Mobile Computing, 4

papers in proceeding of referred conferences and workshops, as well as one book chap-

ter. He is the receiver of the prestigious Thomas C. Rumble Fellowship in 2010 and

the Summer Dissertation Fellowship. He is also two times receiver of Travel Award

for Excellence in Graduate Student Research (2008 and 2010). All these rewards are

from Wayne State University.

	Wayne State University
	1-1-2011
	Qos-aware fine-grained power management in networked computing systems
	Jiayu Gong
	Recommended Citation

	Acknowledgements
	List of Figures
	List of Tables
	Chapter Introduction
	Background and Motivation
	Problems and Objectives
	Summary of Contributions
	Outline

	Chapter Related Work
	Transmission Speed Adaptation in Communication Systems
	Power Management in Enterprise Environments
	Power Consumption Measurement, Modeling and Profiling
	Power Management Mechanism
	Power Management Scope
	Power Management Objectives
	Power Management Methodologies

	Chapter Maximizing Rewards in Wireless Networks with Energy and Timing Constraints
	System Model and Problem Formulation
	Data Model
	Power Consumption Model
	Problem Formulation

	Branch-and-Prune for the Optimal Solutions
	Branch-and-Prune Algorithm
	Algorithm Analysis

	Time-Efficient Approximation
	Polynomial-time Approximated Approach (Clustering)
	Algorithm Analysis

	Performance Evaluation
	Simulation Setup
	Simulation Results

	Chapter PPM: A Power Management Middleware for Networked Computing Systems
	Overview
	Real-Time Power Metering
	Design of Power Metering Tool
	Power Model
	Power Model Evaluation
	Integration with DSP

	Power Management Middleware
	Architecture
	Design of Power Management Client (PMC)
	Design of Power Management Server (PMS)
	Cross-Layer Message Passing

	Chapter System-Level Peak Power Management
	Black-box Feedback Control for Power Management
	Overview of Feedback Control
	Design of the PID Controller

	A Gray-box Approach
	Architecture
	Controller Design
	Model Prediction

	Model Construction
	Experiment Environment
	Model Parameters Estimation

	Evaluation
	Experimental Methodology
	Model Validation
	Controller Responsiveness
	Impact on Performance of Application

	Chapter Automated Coordination of Power and Performance in Virtualized Data centers
	System Architecture
	Control Power and Performance with VCPU Caps
	Design of vPnP

	System Implementation
	Evaluation
	Experimental Methodology
	Experimental Results

	Chapter Statistical QoS Guarantee on Processing Delay in BBUs
	Policy Design
	Robbins-Monro Method
	Fuzzy Controller

	Implementation
	Experimental Results

	Chapter Conclusions and Future Work
	Conclusions
	Future Work

	References
	Abstract
	Autobiographical Statement

